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Abstract

Main conclusion This review provides new insight that

calcium plays important roles in plant growth, heavy

metal accumulation and translocation, photosynthesis,

oxidative damage and signal transduction under cad-

mium stress.

Increasing heavy metal pollution problems have raised

word-wide concerns. Cadmium (Cd), being a highly toxic

metal, poses potential risks both to ecosystems and human

health. Compared with conventional technologies, phy-

toremediation, being cost-efficient, highly stable and

environment-friendly, is believed to be a promising green

technology for Cd decontamination. However, Cd can be

easily taken up by plants and may cause severe phytotox-

icity to plants, thus limiting the efficiency of phytoreme-

diation. Various researches are being done to investigate

the effects of exogenous substances on the mitigation of Cd

toxicity to plants. Calcium (Ca) is an essential plant

macronutrient that involved in various plant physiological

processes, such as plant growth and development, cell

division, cytoplasmic streaming, photosynthesis and intra-

cellular signaling transduction. Due to the chemical simi-

larity between Ca and Cd, Ca may mediate Cd-induced

physiological or metabolic changes in plants. Recent

studies have shown that Ca could be used as an exogenous

substance to protect plants against Cd stress by the alle-

viation of growth inhibition, regulation of metal uptake and

translocation, improvement of photosynthesis, mitigation

of oxidative damages and the control of signal transduction

in the plants. The effects of Ca on toxic concentrations of

Cd in plants are reviewed. This review also provides new

insight that plants with enhanced Ca level have improved

resistance to Cd stress.

Keywords Metal accumulation � Oxidative stress �
Photosynthesis � Signal transduction

Introduction

Heavy metals are derived from natural sources and

anthropogenic activities. Heavy metal pollution has

attracted widespread attentions in recent years due to the

overexploitation and the abuse of the toxic heavy metals

(Huang et al. 2008; Islam et al. 2015; Sakan et al. 2015;

Yang et al. 2015b). Compared with other pollutants, heavy

metals usually cannot be degraded and are easy to be bio-

accumulated through the food chain, thus posing long-term

threat to both the ecosystems and human health (Huang

et al. 2015; Jarup 2003). Among all the heavy metals,

cadmium (Cd) is a non-essential and highly toxic heavy

metal. It is mainly derived from anthropogenic activities,

such as mining, electroplating, metallurgy, waste com-

bustion and the abuse of Cd-containing pesticides and

fertilizers (Cheng et al. 2014; Fagerberg et al. 2015). In

addition, Cd is classified as a probable human carcinogen,

which may cause cardiovascular disease, skeletal damage,

and lung, prostate and kidney cancer in human bodies

(Hong and Yan 2015; Brodziak-Dopierała et al. 2015;
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Yang et al. 2015a; Ansari et al. 2015). Therefore, measures

should be taken to deal with the problems of Cd

contamination.

Remediation of Cd-contaminated soils can be carried

out by physical, chemical and biological technologies

(Huang et al. 2016; Singh and Prasad 2014). Compared

with conventional soil remediation practices, phytoreme-

diation has been considered as a developing and promising

alternative technology owing to its cost-efficient, high

stability, and environment-friendly properties (Shahid et al.

2014; Koptsik 2014; Ali et al. 2013). The species such as

Leonotis leonurus, Eucalyptus globulus, Helianthus annuus

L. and Athyrium wardii showed high Cd accumulation

ability, which indicated that using phytoremediation for

Cd-contaminated soil remediation is feasible (Buhlungu

and Ntoni 2002; Luo et al. 2015; Kastori et al. 1992; Zhang

et al. 2014a). However, high Cd accumulation will result in

metal-induced toxic symptoms of the plants (Tran and

Popova 2013; Li et al. 2016). It has been reported that Cd

could alter the synthesis of RNA, cause leaf roll and

chlorosis, reduce photosynthesis rate, inhibit stomata

opening and decrease the activities of several enzymes in

plants (Kesseler and Brand 1995; Salt et al. 1995; Gallego

et al. 1996; Obata and Umebayashi 1997). Plants have

evolved various mechanisms to cope with Cd stress, such

as cell wall binding, metal chelation with proteins and the

compartmentation of Cd in the vacuole. Nevertheless, the

uptake of Cd was inefficient and the toxic effects of Cd

were pronounced especially with high Cd accumulation in

most plant species. To develop phytoremediation tech-

nologies, significant progress in improving Cd-remediation

capability of plants has been made in the last few years

through comparative physiological, cytological and geno-

mic studies (Bhargava et al. 2012). The addition of

exogenous substance has been recognized as a feasible

technique to improve the phytoremediation efficiency of

heavy metals contaminated soil. For example, the appli-

cation of the exogenous nitric oxide, citric, oxalic acid,

selenium and silicon has been found to prevent the growth

inhibition, mitigate the oxidative stress and ameliorate

other deleterious effects of Cd in Boehmeria nivea (L.)

Gaud (Wang et al. 2015; Li et al. 2014; Wang et al. 2014;

Tang et al. 2015). Meanwhile, the study conducted by

López demonstrated that plants could increase their metal

accumulation potential by using ethylenediaminetetraacetic

acid, gibberellic acid, kinetin and indole-3-acetic acid, thus

increasing the phytoremediation efficiency (López et al.

2005, 2007). Specifically, it has been reported that

exogenously applied calcium (Ca) could alleviate the tox-

icity of Cd in Arabidopsis seedlings, Gamblea innovans,

tobacco and Maize seedlings (Choi and Harada 2005;

Hayakawa et al. 2011; El-Enany 1995; Suzuki 2005). Ca, a

divalent cation, has high physical resemblance to Cd and it

may regulate Cd-induced physiological or metabolic

changes in the organisms (Kinraid 1998; Dayod et al.

2010). Ca is recognized as a central regulator for plant

biochemical and physiological processes (Hirschi 2004)

and this may involve the alleviation of heavy metal-in-

duced toxicity to plants. Several recent investigations have

demonstrated the important roles of Ca in plants resistance

to Cd stress (Table 1). Ca was found to protect plants

against Cd stress and the possible mechanisms are as fol-

lows: First, the alleviation of growth inhibition and the

regulation of Cd accumulation and translocation are the

superficial phenomenon of Ca protection; Additionally, Ca

alleviates Cd-induced oxidative stress in plants by scav-

enging reactive oxygen species (ROS), increasing antiox-

idant levels and enhancing antioxidant enzymes activities;

Furthermore, the detoxification of Cd in plants might also

involve the enhancement of plant photosynthesis and the

crucial roles of Ca in Ca-dependent signaling transduction

under Cd stress. In this review, the current knowledge of

the effects of Ca at toxic concentrations of Cd in plants was

summarized, and the focus is to review the effects of Ca on

plant growth, metal accumulation, oxidative stress, photo-

synthesis, and Ca-dependent signal transduction in plants

under Cd stress (Fig. 1).

Effects of exogenous Ca on plant growth under Cd

stress

Growth inhibition is one of the distinct symptoms of metal

toxicity. It has been reported that Cd could induce growth

inhibition and reduce the biomass production of plants in

most species (Deng et al. 2014; Dias et al. 2012). A

reduction in root growth is the most distinct physiological

response of plants to heavy metal stress since roots are in

direct contact with contaminants. As found by Stravin-

skien _e and Račait _e (2014), the effect of Cd on root lengths

reduction of Trifolium repens L. was more remarkable than

that of shoots. Furthermore, the negative impacts of Cd on

plant growth varied with different plant species and were in

a concentration-dependent manner. Four concentrations of

Cd (50, 100, 200, 400 lM) were used to investigate the

effects of Cd on plant growth of Atriplex halimus subsp.

schweinfurthii (Nedjimi and Daoud 2009). Results

demonstrated that Cd-treated seedlings showed signifi-

cantly reduced fresh and dry weights of the shoots and

roots, and the biomass production was markedly decreased

with increasing Cd concentrations.

Ca is an essential element for plant growth and devel-

opment. It has been concluded that Ca could positively

affect plant height, root length and the biomass production

of the plants under Cd stress. One of the possible reasons is

represented by the involvement of Ca in plant cell division.

For example, supplementation of the medium with Ca was
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found to ameliorate a wide variety of Cd-induced mitotic

abnormalities in the organisms. The application of Ca

alleviated Cd-induced growth reduction by decreasing the

frequency of chromosomal aberration and increasing the

mitotic index in Vicia faba plants (Mohamed 2012).

Besides, the interactions between Ca and plant growth

regulators, such as gibberellic acid, auxin and ethylene,

might also alleviate plant growth inhibition under Cd

stress. As found by Brunetti et al. (2011), Cd treatments

significantly suppressed the root growth of Arabidopsis

seedlings. Li et al. (2015a) further studied the impacts of

Ca on Cd toxicity to Arabidopsis seedlings. They found

that Ca supplementation restored normal auxin trans-

portation and distribution in the plants, and, thereby, mit-

igated Cd-induced plant growth depression. Furthermore,

the addition of exogenous Ca contributes to an enhance-

ment of the essential mineral elements uptake and these

elements are beneficial to plant growth and development.

For instance, 0.1 mM Cd treatments significantly reduced

the root, mesocotyl and coleoptile lengths of maize seed-

lings. The application of 10 mM Ca counteracted the

deleterious effect of Cd on maize growth by the mainte-

nance of high levels of potassium (K) and sodium (Na)

(Kurtyka et al. 2008). Similarly, the suppressed contents of

total phenol, flavonoid and mineral elements in Cd stress

plants were restored with the addition of exogenous Ca,

thus improving the crop yield of Cicer arietinum L. (Par-

vaiz et al. 2016).

Effects of exogenous Ca on Cd accumulation

and translocation

Although Cd is a non-essential element, the uptake and

translocation of Cd in plants are quite common (Zhang

et al. 2014b). The plants, such as Phragmites australis,

Pentas lanceolata and Bechmeria nivea L. Gaud, exhibited

a relatively high capability of Cd accumulation (Iannelli

et al. 2002; Chang et al. 2013; Liu et al. 2007). However,

there are no confirmed specific transport channels for Cd

uptake in plants so far to our knowledge. Non-essential

metals could be absorbed by plants via the transporters and

channels for essential elements (Rodriguez-Hernandez

et al. 2015; Mleczek et al. 2012). For example, IRT1 gene

is a major transporter responsible for iron uptake in Ara-

bidopsis. The over expression of IRT1 resulted in a higher

level of Cd accumulation, suggesting that uptake

Table 1 Roles of Ca in the alleviation of the deleterious effects of Cd in plants

Plant species Cd content Ca

content

Effects of exogenous Ca References

Brassica

juncea L.

1.79 or

2.68 mM

50 mM Improved growth and biomass yield; Enhanced oil and proline contents;

Decreased Cd conten and MDA levels; Promoted SOD, APX, GR activities

Ahmad et al.

(2015)

Matricaria

chamomilla

L.

120 or

180 lM

0.1, 1, or

5 mM

Reduced Cd content and ROS accumulation; Increased proteins contents and dry

weight; Decreased SOD, POD, CAT activities and MDA content

Farzadfar et al.

(2013)

Lens culinaris

Medic.

10, 20 or

40 lM

5 mM Decreased Cd accumulation; declined H2O2 and MDA levels, enhanced fresh

weight; modulated SOD, APX, CAT, DHAR and GR activities

Talukdar (2012)

Sedum alfredii

H.

400 lM 6 mM Decreased Cd content, ROS and MDA levels; alleviated growth inhibition;

altered CAT, SOD, POD activities and non-protein thiols contents; elevated

GSH content

Tian et al. (2011)

Rice 100 lM 1, 5, or

10 mM

Alleviated growth inhibition; elevated NO, pectin and hemicellulose contents;

decreased Cd, protein thiols, and non-protein thiols levels

Zhang et al.

(2012)

Wedelia

trilobata L.

100, or

300 lM

10, 20 or

30 mM

Enhanced mitotic index; decreased chromosomal aberration rate Shi et al. (2014)

Vicia faba L. 200 lM 40 mM Improved growth traits and Ca, potassium, chlorophyll a, b, and proline content;

Increased CAT, POD and SOD activities; Reduced Cd content and MDA levels

Siddiqui et al.

(2012)

Micrasterias 150 lM 232 lM

or

2 mM

Prevented chloroplast structure disturbance; Improved photosynthesis efficiency;

Reduced autophagy induction

Andosch et al.

(2012)

Pisum sativum

L.

25 or

50 lM

1 or

5 mM

Increased CAT, POD activities; elevated ascorbic acid, tocopherol and

carotenoids contents; changed a-esterase, b-esterase and acid phosphatase

isozymes concentrations; Improved soluble protein and carbohydrate contents;

decreased phenol, proline and MDA levels

El-Beltagi and

Mohamed

(2013)

Brassica

napus L.

500 lM 2 mM Reduced intercellular CO2 level, non-photochemical quenching and Cd

accumulation; alleviated growth inhibition; improved photosynthetic rate,

stomatal conductivity and transpiration rate

Wan et al. (2011)
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transporter of essential elements could provide an effective

means of metal absorption in the plants (Connolly et al.

2002). Similarly, it has also been found that Cd could be

taken up by rice through manganese transporters (Sasaki

and Ma 2012). Specifically, the study conducted by Perfus-

Barbeoch et al. (2002) found that Ca channels were per-

meable to Cd and Cd could enter plant guard cell through

Ca channels. Inversely, it also has been suggested that

essential elements might impact the uptake and transport of

non-essential metals in plants. Therefore, Ca will affect Cd

accumulation and translocation in plants and the influences

are complex and varied in different plant species. In runner

bean, 255 mg/L Ca and Cd treatment plants showed a

remarkably higher Cd accumulation specificity than the

only Cd treatment group (Skórzyńska-Polit et al. 1998).

Low concentration of Ca treatment also enhanced the

uptake of Cd in the roots of Brassica juncea and Sesbania

sesban (Eller and Brix 2016). On the other hand, the

application of exogenous Ca significantly reduced the

uptake of Cd in most of the plants species (Suzuki 2005;

Kurtyka et al. 2008). Significant reduction of Cd concen-

trations in rice roots were observed with the addition of

100 lM Ca, suggesting that the protective effects of Ca on

Cd toxicity could be predominantly related to its inhibition

of Cd absorption in the roots (Kim et al. 2002). Similar

decreases of Cd accumulation were observed in soybean

and wheat roots in the presence of 1 and 10 mM Ca (Yang

and Juang 2015). In addition, the effects of Ca on Cd

accumulation varied in different plant organs. As found by

Hayakawa et al. (2011), Cd concentrations in the roots

were increased in Ca ? Cd treatment plants when com-

pared with the only Cd treatment plants, but Ca treatment

negatively affected the uptake of Cd in G. innovans stems

and leaves.

It is generally accepted that plant roots possess a much

greater ability for Cd accumulation than the aerial parts.

Apart from the absorption capability, phytoremediation

efficiency also depends on the translocation ability of the

pollutants in plants. One of the indicators used to estimate

the transportation of Cd in the plants is the translocation

factor (TF), which is defined as the ratio of metal contents

in the aboveground parts to that in the roots (Ajm and

Whiting 2002; Kováčik 2013; Jiali et al. 2013). Ca is found

to play a crucial role in heavy metal transport from plants

roots to shoots. It has been reported that the treatment of Ca

with 120 lM Cd could increase the TF value of Cd in

chamomile plants, indicating that Ca could promote Cd

translocation from plant roots to the aboveground parts

(Farzadfar et al. 2013). Since Cd retained in the roots can

be released back into the environment, the increased TF

value of Cd induced by the addition of exogenous Ca is

beneficial to the phytoremediation of Cd-contaminated soil.

The influences of Ca on Cd uptake and transport can be

attributed mainly to the competition between Ca and Cd.

Ca, as a divalent cation, shares many transporters, trans-

port-channels and binding sites with Cd, and, thereby,

facilitated or suppressed Cd accumulation and transloca-

tion in the plants (Rodriguez-Hernandez et al. 2015). A

gene encoding Ca transporter proteins was isolated from

Sedum alfredii, and the over-expression of this gene

enhanced Cd accumulation in tobacco (Zhang et al. 2015).

Moreover, the impacts of Ca on Cd accumulation and

translocation are dose-dependent (Marchetti 2013). In our

previous study, we found that the application of 5 mM Ca

significantly reduced Cd accumulation in B. nivea (L.)

Gaudich. Instead, under the treatment of 1 mM Ca, the

enhancement of Cd uptake and the promotion of Cd

translocation were observed (Gong et al. 2016). In addition,

the role of Ca in the protection of plasma membrane also

will influence the effects of Ca on Cd accumulation. Plant

plasma membrane acts as a barrier of Cd into plant cells. It

has been noted that Ca plays a key role in the control of the

stability and integrity of the cell membrane (Jones and Lunt

1967), thus impeding the entrance of Cd into plant cells.

On the other hand, the negative charged membrane

potential which provides a driving force for metal

Fig. 1 Possible mechanisms of the protective role of Ca against Cd-

induced toxicity in plants
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adsorption was thought to be changed by the addition of

exogenous Ca. A study conducted by Kinraid (1998)

demonstrated that high level of Ca treatment reduced Cd

accumulation by decreasing the cell-surface negativity of

plant cell membranes (Kinraid 1998).

Alleviation of Cd-induced oxidative stress

ROS are continuously produced in the plants as byprod-

ucts of aerobic metabolism processes, such as respiration

and photosynthesis (Apel and Hirt 2004; Lehmann et al.

2015; Saed-Moucheshi et al. 2014). The generated ROS,

acting as signaling molecules, control various processes

including pathogen defense, programmed cell death and

stomata behavior in the plants (Kärkönen and Kuchitsu

2015). However, the excess amount of ROS could react

with a large variety of biomolecules, thus leading to tissue

necrosis and may ultimately kill the plants (Apel and Hirt

2004). Under physiological steady state, the production

and scavenging of ROS is in equilibrium in the plants.

Nevertheless, environmental factors, such as salt, light,

drought and heavy metals stress, will break the equilib-

rium between ROS generation and scavenging. A number

of researchers have noted that Cd-induced deleterious

effect in the organisms could be ascribed to, at least

partially, the oxidative burst due to the excessive pro-

duction of ROS.

Large amounts of ROS including superoxide radicals

(O2̇
-), hydrogen peroxide (H2O2) and hydroxyl radical

(OḢ) are produced under Cd stress and thereby induce

oxidative damages to plants (Perez-Chaca et al. 2014; Liu

et al. 2015; Piterková et al. 2015; Xu et al. 2015). Ca has

been implicated in the control of ROS production and

scavenging of some plants (Srivastava et al. 2015). In lentil

seedlings, Cd treatment presented an upward trend of H2O2

in plants shoots and roots, while the addition of Ca notably

reduced the H2O2 levels of the Cd-treated seedlings

(Talukdar 2012). It has also been demonstrated that Cd

treatment considerably increased O2̇
- and H2O2 contents in

chamomile, and the application of CaCl2 significantly

decreased the concentrations of the above two ROS in

chamomile roots and the aboveground parts (Farzadfar

et al. 2013). Furthermore, Tian et al. (2011) used fluores-

cence imaging to visualize the ROS production in plants

directly. This study employed specific O2̇
- and H2O2

probes to better illustrate their generations. Results showed

that the production of large amounts of O2̇
- and H2O2 were

observed in S. alfredii roots under Cd treatment. The

application of exogenous Ca resulted in a relatively slight

fluorescence of these two substances, indicating low levels

of ROS generation. It can be concluded that the controlled

and regulated production of ROS is one of the Ca protec-

tive mechanisms against Cd-induced oxidative damages.

Plants have evolved sophisticated strategies containing

enzymatic and non-enzymatic mechanisms to maintain

ROS homeostasis under environmental stress (Mittler

2002). Anti-oxidative enzymes play major roles in enzy-

matic reactions of oxidation-resisting mechanisms. Super-

oxide dismutase (SOD) acted as the first line of defense

against ROS, which catalyzed O2̇
- to H2O2. The overpro-

duced H2O2 was then converted into H2O by peroxidase

(POD), catalase (CAT), ascorbate peroxidase (APX), etc.

(Kumar et al. 2010; Cao et al. 2015). Ca is capable in the

regulation of the activities of some enzymes related to ROS

scavenging, which further strengthen plants capability to

withstand the oxidative stress caused by Cd. Ahmad et al.

(2015) studied the effects of Ca on the alleviation of Cd

toxicity in B. juncea L. The researchers found that the

application of Ca decreased Cd uptake, enhanced oil and

proline contents, prevented growth inhibition, and pro-

moted SOD, APX and GR activities in the plants. These

results suggested that the enhanced antioxidant enzymes

activities caused by Ca played a crucial role in the allevi-

ation of Cd toxicity. Similarly, the addition of Ca to the

culture media considerably mitigated Cd-induced oxidative

stress by regulating the activities of SOD, APX, CAT,

dehydroascorbate reductase (DHAR) and glutathione

reductase (GR) in the shoots and roots of Lens culinaris

Medic. seedlings (Talukdar 2012). In addition, it is note-

worthy that Ca deficiency aggravated Cd toxicity in rice

seedlings by negatively influencing the activities of APX,

SOD, CAT and GR, which further certified the important

roles of Ca in the anti-oxidative defense systems (Cho et al.

2012). Furthermore, Ca was found to regulate NADPH

oxidases activity of plasma membranes under Cd stress,

and these enzymes are responsible for ROS production in

the plants (Heyno et al. 2008). The non-enzymatic

antioxidant system is composed of a wide variety of non-

enzymatic antioxidants, which provide protection to plants

organelles and biomolecules by directly scavenging the

overproduced ROS. The contents of antioxidants in plants

tissues could be modified by the addition of exogenous Ca.

In Pisum sativum L. seedlings, CaCl2 was highly effective

against Cd-induced oxidative burst by increasing the con-

centrations of antioxidants such as ascorbic acid (ASA),

tocopherol and carotenoids (El-Beltagi and Mohamed

2013). Glutathione (GSH), an important antioxidant, plays

a pivotal role in plant ascorbate–glutathione cycle and

glutathione-peroxidase cycle (Xu et al. 2014). Tian et al.

(2011) found that S. alfredii roots treated with Ca resulted

in the decrease of Cd accumulation and H2O2 contents, as

well as the increase of GSH level, suggesting that the

alleviation effect of Ca against Cd-induced oxidative stress

is related to the promotion of GSH biosynthesis. Besides,

GSH is a precursor of phytochelatin (PCs) and PCs could

chelate with Cd to form a stable Cd-contained substance
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for metal sequestration (Chao et al. 2011). A study using

citrus plants demonstrated that the optimum content of

GSH maintained by the addition of Ca improved plants

resistance to Cd stress by increasing PC biosynthesis

(Lopez-Climent et al. 2013). In addition, the excessive

production of ROS in the plans may perturb the cellular

redox homeostasis. In Cd-treated rice seedlings, the

increase ratios of GSSG/GSH and DHA/ASA were found,

indicating a gradual shift to the oxidized cellular redox

status in the plants. Ca treatment significantly reduced

GSSG/GSH and DHA/ASA ratios, suggesting that Ca-

mediated pathways on the mitigation of Cd toxicity were

associated with the maintenance of the cellular redox

homeostasis in the plants (Srivastava et al. 2015; Rahman

et al. 2016). Besides, a positive correlation between the

expression of Ca transporter CAX1 and Cd tolerance was

observed in Arabidopsis halleri (Baliardini et al. 2015). As

found by Baliardini et al., function loss of the Ca trans-

porter CAX1 led to higher ROS accumulation in the plants

after Cd treatment, showing that Ca transporters were

involved in the alleviation of plant oxidative damage under

Cd stress.

The cellular oxidative damage in the plants has often

been monitored by measuring lipid peroxidation (Spirlan-

deli et al. 2014). In V. faba L., exogenous Ca addition

attenuated Cd-induced lipid peroxidation (Siddiqui et al.

2012). The alleviation of lipid peroxidation may be the

result of the protective role of Ca in the control of the

integrity and stability of the membranes structure and

functions. The decrease of lipid peroxidation induced by

the application of Ca under Cd stress has also been found in

L. culinaris Medic., P. sativum L. and Matricaria chamo-

milla L. (Talukdar 2012; El-Beltagi and Mohamed 2013;

Farzadfar et al. 2013).

Regulation of plant photosynthesis by Ca under Cd

stress

Photosynthesis is the process in which plants utilize the

energy of sunlight in the presence of chlorophyll. One of

the deleterious effects caused by Cd is the inhibition of

plant photosynthesis (Degl’Innocenti et al. 2014; Li et al.

2015b). It has been found that 10 and 50 lM Cd treatment

could depress the maximum photochemical efficiency of

photosystem II (PSII) and the net CO2 assimilation rate in

lettuce (Dias et al. 2012). In Ceratopteris pteridoides, the

application of Cd negatively affected the photosynthesis of

plants by decreasing the chlorophyll content and reducing

the relative electron transport rate (Deng et al. 2014).

Ca plays important roles in the regulation of plant

photosynthesis, including photosynthetic electron flow and

the light-dependent metabolism reactions (Brand and

Becker 1984; Hochmal et al. 2015). Ca is also required as

the obligatory activators of H2O oxidation in PSII (Miqyass

et al. 2007). Ramalho et al. (1994) investigated the effects

of Ca deficiency on Coffea arabica photosynthesis, which

confirmed that Ca played a pivotal role in the maintenance

of photochemical efficiency of PSII and in the stabilization

of chlorophyll. Application of Ca to the growth media has

been found to restore the photosynthesis efficiency in the

plants under Cd stress. The pre-treatment of Ca ameliorated

the decline of oxygen production and the structural damage

of chloroplast caused by Cd in Micrasterias, and, therefore,

rehabilitated the photosynthetic activity in the plants (An-

dosch et al. 2012). Furthermore, Ca is an essential cofactor

of the catalytic inorganic core (Mn4CaOxCly) in PSII. Cd

adversely affected the PSII via the substitution of Ca by Cd

during the core assembly (Faller et al. 2005). Thus,

applying appropriate concentrations of Ca could restore

plant photosynthesis inhibited by Cd (Bartlett et al. 2008).

However, the regulation of plant photosynthesis by Ca

under Cd stress varied with different Ca concentrations. An

excess content of Ca application was found to disturb the Pi

level presented in chloroplasts, which aggravated the

harmful effects of Cd on plant photosynthesis (Skórzyńska-

Polit et al. 1998).

Ca-dependent signal transduction under Cd stress

Ca has been proposed to act as an intracellular ‘‘second

messenger’’ that can transduce signals received by plant

cells and mediate plant responses to the biotic and abiotic

stresses such as pathogen invasion, salt, heat, light, drought

and heavy metal stress (Dayod et al. 2010). Ca signatures

are generated by the transient or sustained elevation of the

cytosolic Ca content. The changed cytosolic Ca content

will be perceived by Ca sensor proteins and then evoke

downstream signaling responses (Huda et al. 2013;

Lecourieux et al. 2006). Recent works have identified and

characterized the following most common Ca sensors: Ca-

dependent protein kinase (CDPK), calmodulin protein

(CaM), calmodulin-like protein (CML), calcineurin B-like

protein (CBL) and CBL-interacting protein kinases

(CIPKs). The above Ca sensors translate Ca signatures

through the modification of specific target proteins or genes

expression (Hashimoto and Kudla 2011). The regulation of

target proteins and protein related-genes expression play

critical roles in the physiological processes of plants under

environmental stress. The expression of heat-shock pro-

teins and cold-responsive gene were regulated by CaM

which imparted plant with thermo tolerance and freezing

tolerance (Zhang et al. 2009; Stockinger et al. 2007).

Besides, some members of the Ca sensors have been found

to enhance stress tolerance of the plants directly.

AtCML19, a kind of CML, showed repair function of cell

damage caused by UV irradiation (Molinier et al. 2004).
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Specifically, CDPKs were found to enhance Cd tolerance

in Arabidopsis thaliana through intensifying H2S signal

(Qiao et al. 2016). The experimental evidence for Ca-de-

pendent signaling in the regulation of Cd stress in plants is

still lacking. But it has been reported that Ca signals could

trigger numerous defense reactions in plants which cer-

tainly will help plants better cope with Cd stress. For

instance, researches have confirmed the function of Ca-

dependent signaling in the regulation of plant photosyn-

thesis and respiration (Islam et al. 2010), which might

enhance plants Cd-tolerance by the regulation of plant

physiological processes. Furthermore, it has been reported

that Ca-signaling could mediate cell response to Cd toxi-

city and it also could participate in the regulation of Cd-

induced cytotoxicity and cell death (Jiang et al. 2015; Ruta

et al. 2014). Besides, the interaction between Ca signatures

and ROS waves has unraveled a new pathway of the

oxidative damage alleviation in the organisms (Gilroy et al.

2014; Steinhorst and Kudla 2014), and this may provide

another possible mechanism to better illustrated the func-

tion of Ca in the alleviation of Cd-induced oxidative stress.

Further detailed researches are required to elucidate the

precise role of Ca-dependent signaling in the amelioration

of Cd-induced toxicity.

Other possible mechanisms

Several studies have provided other possible mechanisms

regarding the influence of exogenously applied Ca on Cd

toxicity. Choi and Harada (2005) studied the roles of Ca on

Cd toxicity to tobacco, and they found that the extra and

intracellular sequestration of Cd via Ca crystallization

could ameliorate Cd-induced damages in the plants.

Moreover, a cross-talk between Cd, Ca and nitric oxide

(NO) has been observed in plants. The application of Cd

depressed NO production strongly in pea plant cells, and

the addition of Ca retarded this effect, thus protecting plant

cells against Cd-induced toxicity (Rodriguez-Serrano et al.

2009). Likewise, the application of Ca increased the

endogenous NO levels under Cd stress in rice seedlings,

and, thereby, influenced Cd transport in plant cells. The

results indicated that Ca could protect plants against the

deleterious effects of Cd via the generation of NO (Zhang

et al. 2012). Additionally, it has been demonstrated that the

occurrence of autophagy induced by Cd in plant cells could

be prevented by the pre-treatment of Ca (Andosch et al.

2012). Meanwhile, the increased accumulation of the pro-

tective substances, such as the total soluble protein, proline

and pectin, triggered by Ca could also ameliorate Cd-in-

duced toxicity in plants. For example, Ca application

ameliorated the harmful effects of Cd in B. juncea by

enhancing the contents of proline in plants leaves (Hayat

et al. 2015). Furthermore, Ca also plays an important role

in the modification of glyoxalase system and it could

reduce methylglyoxal toxicity in plants under Cd stress

(Rahman et al. 2016).

Conclusions and perspectives

The present review covers the roles of Ca in the plants

under heavy metal stress, which emphasizes the effects of

Ca on plant growth, metal accumulation and translocation,

photosynthesis, oxidative damage and signal transduction

under Cd stress. The review also provides new insight that

Ca could be used as an exogenous substance to ameliorate

the harmful effects of Cd and to improve the phytoreme-

diation efficiency of Cd contaminated soil (Fig. 1).

Meanwhile, in this review, we present several mechanisms

to certify the protective role of Ca in the alleviation of Cd

toxicity, and these mechanisms could be further applied to

explore the influences of other exogenous substances to

plants under environmental stress, thus finding new

approaches to improve plant resistance and enhance phy-

toremediation efficiency.

Many researchers have made great efforts to clarify the

roles of exogenous substances in the alleviation of heavy

metal toxicity to plants. However, the impacts of exoge-

nous substances could be affected by many factors, and the

related mechanisms were still unclear and debatable.

Therefore, further studies are needed to find the most

suitable conditions for the application of exogenous sub-

stances and to explore the unrevealed mechanisms of the

exogenous substances in the mitigation of heavy metal

induced toxicity. Besides, novel methods and techniques,

such as fluorescent tracer technique, should be developed

and utilized to visualize the uptake and distribution of

exogenous substances and the target pollutants in the plans

quantitatively and qualitatively. Moreover, knowledge of

the molecular and genetic mechanisms by which exoge-

nous substances help plants better cope with heavy metal

stress is limited. Further in-depth physiological, molecular

and genetic studies are needed to provide a more com-

prehensive explanation of the impacts of exogenous sub-

stances on heavy metal induced toxicity in plants.
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