- Sorption, transport and biodegradation An insight into 1
- bioavailability of persistent organic pollutants in soil 2
- Xiaoya Ren ^{a,b}, Guangming Zeng ^{a,b,*}, Lin Tang ^{a,b}, Jingjing Wang ^{a,b}, Jia Wan ^{a,b}, Yani Liu ^{a,b}, 3
- Jiangfang Yu a,b, Huan Yi a,b, Shujing Ye a,b, Rui Deng a,b 4
- ^a College of Environmental Science and Engineering, Hunan University, Changsha, 5
- 410082, China; 6
- ontrol, Hi. ^b Key Laboratory of Environmental Biology and Pollution Control, Hunan University, 7
- Ministry of Education, Changsha 410082, China; 8

E-mail: zgming@hnu.edu.cn(G.M. Zeng)

* Corresponding author: Tel.: +86–731–88822754; Fax.: +86–731–88823701

Abstract

9

Contamination of soils with persistent organic pollutants (POPs), such as 10 organochlorine pesticide, polybrominated diphenyl ethers, halohydrocarbon, 11 polycyclic aromatic hydrocarbons (PAHs) is of increasing concern. Microbial 12 degradation is potential mechanism for the removal of POPs, but it is often restricted 13 by low bioavailability of POPs. Thus, it is important to enhance bioavailability of 14 POPs in soil bioremediation. A series of reviews on bioavailability of POPs has been 15 published in the past few years. However, bioavailability of POPs in relation to soil 16 organic matter, minerals and soil microbes has been little studied. To fully understand 17 POPs bioavailability in soil, research on interactions of POPs with soil components 18 and microbial responses in bioavailability limitation conditions are needed. This 19 review focuses on bioavailability mechanisms of POPs in terms of sorption, transport 20 and microbial adaptation, which is particularly novel. In consideration of the significance of bioavailability, further studies should investigate the influence of 22 various bioremediation strategies on POPs bioavailability. 23

24

25

26

21

Keywords: POPs; Soil organic matter; Mineral; Microbial adaptation; Soil amendments

27 Contents

28	1. Introduction	4
29	2. Sorption of POPs in soil	5
30	2.1. Impacts of soil organic matter	6
31	2.1.1. Structure characteristics of SOM	7
32	2.1.2. Spatial arrangement of SOM	8
33	2.1.3. Physical conformation of SOM	9
34	2.1.4. Polarity of SOM	10
35	2.2. Impacts of soil minerals	11
36	2.2.1. Pure minerals	12
37	2.2.2. Mineral-SOM complexes	15
38	3. Transport of POPs in soil	17
39	4. Microbial adaptations to enhance bioavailability	18
40	4.1. Morphological adaptation of microorganisms	19
41	4.2. Physiological adaptation of microorganisms	20
42	4.3. Behavioral adaptation of microorganisms	22
43	4.4. Microbial access to adsorbed POPs	23
44	5. Conclusions and Future perspectives	24

1. Introduction

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Contamination of soils with persistent organic pollutants (POPs) has achieved high concerns in recent years. The POPs of particular concern include organochlorine pesticide, polybrominated diphenyl ethers (PBDEs), halohydrocarbon, polycyclic aromatic hydrocarbons (PAHs) (Wang et al., 2011b; Zeng et al., 2013a; Zhang et al., 2007; Zhou et al., 2014). Most of those compounds are toxic to human health even at low concentrations (Deng et al., 2017b; Tang et al., 2016; Tang et al., 2014; Tang et al., 2008). Microbial degradation, as an important mechanism for the removal of POPs, is restricted by the low bioavailability (Chen and Ding, 2012). Therefore, increasing the bioavailability of POPs to degrader is important in soil bioremediation. The National Research Council report defines "bioavailability processes" as the individual physical, chemical, and biological interactions that determine the exposure of organisms to chemicals associated with soils and sediments (Ehlers and Luthy, 2003). From the soil to the microorganism, bioavailability of contaminants involves a full process of adsorption and desorption, transport, and uptake by microorganisms (Rončević et al., 2016). Sorption process limit the substrate supplement and mass transfer of pollutants to microorganisms (Kickham et al., 2012; Wang et al., 2015; Wang et al., 2013c). Therefore, contaminants that adsorb strongly on soil are recalcitrant to degradation, and remain in soil for a long term (Riding et al., 2013; Semple et al., 2013; Wang et al., 2013b; Wu et al., 2014). As for POPs that are bound on the inner domain of soil aggregate or micropore-adsorbed, only by the way of transport can they be accessed by microorganisms, either POPs transfer out or

microorganisms transfer in. Hence, transport of POPs should also be considered (Hu 67 et al., 2011; Liu et al., 2012). In addition to physicochemical process, understanding 68 the mechanisms of microorganisms to attack POPs is required in bioavailability 69 process. Microorganisms with some special characteristics could increase the 70 bioavailability of POPs under physical limitation conditions. For example, 71 micropore-adsorbed POPs are unable to be attached by microorganisms. In this case, 72 secretion of biosurfactant or hypha structure is important (Fester et al., 2014; 73 Pacwa-Płociniczak et al., 2011). To deal with the problem of deficient solubility of 74 POPs, formation of biofilm, secretion of biosurfactant or change of cell wall 75 (Johnsen properties are possible microbial response and Karlson, 2004; 76 Pacwa-Płociniczak et al., 2011; Wick et al., 2002b 77 Several reviews have reported biodegradation mechanisms of POPs during 78 bioremediation (Johnsen et al., 2005; Ortega-Calvo et al., 2015; Semple et al., 2007; 79 Stroud et al., 2007). However, the interactions of POPs with soil components and 80 microorganisms associated characteristics to bioavailability have been little studied. 81 Three following aspects were included in this paper: (i) the sorption behavior of soil 82 organic matter (SOM) and minerals to POPs; (ii) transport ways of POPs in soil; and 83 (iii) microbial adaptations to increase bioavailability of POPs under bioavailability 84 restriction conditions. By giving a particular analysis about bioavailability 85 mechanisms of POPs, we want to provide a good research idea of bioavailability in 86

2. Sorption of POPs in soil

soil bioremediation.

87

88

It has been reported that bioavailability of POPs was decreased after adsorption by soil. With time increasing, soils form stronger binding with POPs, consequently causing a decline in bioavailability, a process termed as aging. Aging results in three contaminant desorption manners: the 'rapid', 'slow' and 'very-slow domains. The rapid desorption fractions are surface-adsorbed and interchangeable with the pore-water, thus readily bioavailable. However, 'slow' and 'very-slow fractions are strongly bounded or micropore-adsorbed, making it unavailable by microorganisms (Semple et al., 2007). Slow or irreversible desorption of POPs is the the main factors restricting their bioavailability. Although microorganisms can attack adsorbed contaminants, they prefer dissolved fractions (Megharai et al., 2011). Therefore, sorption and desorption in soil are fundamental processes in controlling susceptibility of POPs to microbial degradation. Sorption of POPs is mostly affected by the content and properties of SOM. Meanwhile, soil minerals also play a role in sorption of POPs, especially when organic matter content is lower than 1% (Cheng et al., 2012). Consequently,, both the properties of SOM and minerals should be considered in sorption of POPs.

2.1. Impacts of soil organic matter

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

It has been well demonstrated that the sequestration capacity of soil to POPs is strongly connected to the proportion of SOM (Lima et al., 2012). However, soils with the same organic matter content may have different sorption potentials for POPs. SOM is a heterogeneous mixture including newly deposited biopolymers (*e.g.*, proteins, polysaccharides, and lipids), moderately aged humic substances (HSs), well

matured kerogen and black carbon, each of which are potential sorbents for POPs (Mechlińska et al., 2009). In the study of Liu et al. (2010), sorption coefficient (K_{OC}) of phenanthrene followed the descending order of humin (HM), humic acid (HA) and fulvic acid (FA). Zhu et al. (2016) recently found that desorbing fraction and microbial debromination ratio of PBDEs were weakly related to total organic carbon but strongly related to content of black carbon. It has been reported that structure characteristics (aromaticity and aliphaticity), spatial arrangement, physical conformation and polarity of SOM could affect its sorption capacity.

2.1.1. Structure characteristics of SOM

Whether aliphatic or aromatic domain of SOM is more important to sorption of POPs has been much studied. It is emphasized that aromatic structures of SOM are responsible for its high sorption affinity to POPs because of the specific π - π interactions (Keiluweit and Kleber, 2009). Yang et al. (2010) also proved that phenanthrene would be adsorbed preferentially by aromatic carbon rich lignin than paraffinic carbon-rich wax, thus lowering its bioavailability. However, neither aliphatic nor aromatic domains alone could be used to predict the sorption capacity of SOM (Chefetz and Xing, 2009). Sorption of the nitroaromatic is closely correlated with the aliphatic carbon rather than the aromatic carbon (Singh et al., 2010). This is consistent with the observation from Sun et al. (2013) that aliphatic-carbon of natural organic matter was responsible for the high sorption capacity to benzene and phenanthrene. There is no consensus on which domain of SOM dominates sorption, probably caused by different type of SOM used in different experiments. When a

large number of data set was plotted, no specific correlation was found between phenanthrene K_{OC} and the aromaticity of SOM from different sources (Chefetz and Xing, 2009). This was supported by Hur et al. (2009) that aromatic carbon derived from sediment HA served as a partitioning phase to POPs, while that from soil HA functioned as specific adsorption sites. It is therefore concluded that aromaticity and aliphaticity are both important to sorption, and different performances observed are caused by structural complexity and heterogeneity of SOM.

2.1.2. Spatial arrangement of SOM

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

Additionally, other factors such as SOM spatial arrangement and surface accessibility to POPs also influence the sorption ability of alkyl-carbon structures (Mitchell and Simpson, 2013; Wang et al., 2011b). Mitchell and Simpson (2013) observed weak correlation between K_{OC} and alkyl-carbon content of SOM. They proposed that alkyl-carbon were absorbed strongly to minerals or buried by other organic matter (e.g., carbohydrates and peptides), which made it not accessible to POPs. Moreover, some researchers attributed the different effect of alkyl domains on sorption to two reasons: (i) condensed domains or O-alkyl components covered the high-affinity alkyl domains and (ii) sorption ability of aromatic domains was strengthened by the introduced black carbon (Han et al., 2014; Jin et al., 2015; Mitchell and Simpson, 2013). Jin et al. (2015) also reported that the enhanced π-acceptor ability of aromatic domains in nonhydrolyzable carbon (NHC) would elevate sorption of phenanthrene but not for phthalate esters. The aromatic ring itself on phthalate esters would act as π -acceptors, consequently inhibiting its sorption by

NHC, which highlighted the influence of microenvironment in aromatic-carbon on sorption process. All these results further revealed the significance of sorption domains spatial arrangement.

2.1.3. Physical conformation of SOM

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

SOM described distinct physical conformation, can be as two "soft/rubbery/amorphous phase [i.e., amorphous organic matter (AOM)]" and "hard/glassy/condensed phase [i.e., carbonaceous geosorbent (CG)]" (Cornelissen et al., 2005). AOM is gel-like matrix, consisting of partly degraded and/or reconstituted biopolymers, and humic/fulvic acids, while CG is a relatively rigid and porosity phase, et al., 2013). Partitioning of such as black carbon, kerogen and HM (Semple contaminants mainly occurred in rubbery fraction of SOM while hole-filling primary occurred in the condensed fraction. In kerogen samples, micropore adsorption volumes to phenanthrene and benzene made up 23-46% and 36-65% of its total sorption volumes respectively, suggesting hole-filling as an indispensable mechanism (Zhang et al., 2014). Moreover, it was suggested that amorphous domains of aliphaticity rather than the total level was strongly related with sorption capacity of SOM (Chefetz and Xing, 2009). Amorphous aliphatic domains generally contribute to partitioning of nonpolar chemicals, while rigid aliphatic domains, comparable to aromatic moieties, are linked to nonliner sorption (hole-filling) (Chefetz and Xing, 2009). In the study of Han et al. (2014), aliphaticity of SOM was enhanced with increasing surface area, which validated that the aliphatic moieties were partially responsible for the formation of nanopores in natural sorbents. Interestingly, they

found that aromaticity in engineered sorbents contributed a lot to the nanopore adsorption.

2.1.4. Polarity of SOM

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

On the one hand, polar groups of SOM acted as hydrogen bond acceptor, and water clusters formed on the surface acted as hydrogen bond donor, thereby reducing the accessibility of contaminants to sorption sites by competition effect (Guo et al., 2012; Jin et al., 2015). Also, polar features of HA/FA resulted in less PFOS adsorption due to the increased electrostatic repulsion and decreased hydrophobic effect (Zhang et al., 2015a). On the other hand, polarity of the SOM was positively related to sorption of atrazine (a polar organic compound with mainly aromatic ring), as reported by Wu et al. (2015a). Further, they observed better correlation of K_{OC} with (N+O)/C ratios (polar index) than with H/C ratios (indicator of aliphaticity), indicating that polarity of SOM dominated sorption of atrazine more than its aliphaticity. Unlike the nonpolar organic compounds such as phenanthrene, whose sorption mechanism was controlled by nonspecific hydrophobic partition to the condensed organic matter, sorption of atrazine was attributed to the specific polar interaction e.g., hydrogen bonding between atrazine and polar fractions of SOM (carboxylic and phenolic groups) (Shi et al., 2010; Wu et al., 2015a). Overall, the impact of SOM polarity is dependent on the controlling sorption mechanism. This was also demonstrated in a recent work by Jin et al. (2015) that sorption capacity of phthalate esters was negatively correlated with surface polarity of nonhydrolyzable carbon (NHC) but positively related with polarity of other organic matter (e.g. HA,

HM) due to dissimilar sorption mechanisms. Hydrophobic interactions regulated NHC sorption affinity but both hydrogen bonding and hydrophobic interactions controlled sorption of other organic matter (Jin et al., 2015).

To sum up, structure (aromaticity and aliphaticity), polarity, spatial arrangement and physical conformation of SOM are interactive parameters on sorption of POPs (Fig. 1). For example, the impact of spatial arrangement cannot be ignored when studying the effect of SOM polarity. Guo et al. (2012) found that polyphenyleneoxide, as a polar polymer with substantial O-containing functional groups, showed higher K_{OC} compared with linear polystyrene, a nonpolar polymer. This is contrast to the common notion that polarity of SOM is inversely correlated with its sorption capacity to hydrophobic contaminants (Jin et al., 2015, Zhang et al., 2015a). It could be the result that polar surface was masked in the interior and the hydrophobic sorption domain was exposed outside. Therefore, the interference of different factors on the sorption capacity of SOM should also be considered.

2.2. Impacts of soil minerals

The unique structure of minerals enables it to interact with various compounds, especially highly polar compounds. Sorption of nonpolar 1,3,5-trichlorobenzene decreased by approximately 86% when removal of the whole SOM, while only 34-54% for highly polar 1,3,5-trinitrobenzene (Shi et al., 2010). This indicated higher affinity of soil minerals with polar compounds. As shown in Fig. 1, surface hydroxyl group, adsorbed water molecular, hydrophobic Si-O bridged surfaces, hydrated cations and surficial metal of minerals provide possible sorption site for POPs.

Phyllosilicate clay mineral and metal oxides are widely studied minerals, both of which are effective sorbent in soil. Meanwhile, considering that soil is a complicated integration, organic and mineral phase are interacting together to form aggregates rather than isolated mixtures. In this case, the sorption behavior of mineral-SOM complex is also important.

2.2.1. Pure minerals

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Kaolinite, smectite and illite are common clay mineral. They are constructed by silicon-oxygen tetrahedral sheets and aluminium-oxygenhydroxyl octahedral sheet with the proportion of 1:1 or 2:1(Deng et al., 2017a). Abundant exchangeable cations were held on the surface of clay minerals, which made them possess high cation exchange capacity (Uddin, 2017). The liner relationship between displaced exchangeable cations from montmorillonite and adsorbed ciprofloxacin indicated the presence of cation exchange interactions (Wang et al., 2011a). Also, in a recent work done by Zhao et al. (2015), cation exchange on the negatively charged surface of kaolinite and montmorillonite dominate sorption of tetracycline rather than surface complexation on the edge site (Si/Al-OH). In addition, the interlayer space of phyllosilicate sheet is often occupied by hydrated cations (e.g. Na⁺, K⁺, Mg²⁺ and Ca²⁺). Hydrated cations play a significant role in the sorption of contaminants. Hydroxylated metal cations on the mineral surface form the bridge between the silanol or hydroxyl groups of minerals and negative charged perfluoroalkyl acids (Zhao et al., 2014b). Formation of bidentate chelate or bridge inner-sphere complex was also observed in the interaction of picloram with two metal center of

montmorillonite (Marco-Brown et al., 2015). Besides, hydrogen bonding is demonstrated to be important mechanisms in clay mineral. Hydrogen bonding is formed between polar groups of contaminants and basal oxygen atoms or adsorbed water on minerals (Wang et al., 2011a; Wu et al., 2015b). Hydroxyl groups on the octahedral sheet and tetrahedral sheet (Si-OH and Al-OH) can act as hydrogen bonds donor to oxygen and nitrogen of amides (e.g. C=O dipole, N-C dipole), and the oxygen of the octahedral sheet and tetrahedral sheet can accept H-bonds from N-H dipoles of amides (Li et al., 2015). Therefore, clay minerals could interact with POPs though different mechanisms. For a particular contaminant, the dominating sorption mechanisms are determined by the type of minerals. For example, carbonyl groups of aflatoxin B1 interact with Si/Al-OH surface of kaolinite by electrostatic attractions ((Si/Al-OH)_{2...}(O=C)₂), but form Ca²⁺ bridging with hydrophobic silica-oxygen $(O=C)_2$...Ca²⁺... $(O-Si)_4$), bridged surfaces smectite in electron-donor-acceptor interactions with illite coordinated by K⁺ ((O=C)₂ ...K⁺... (O-Al)₃) (Kang et al. 2016). This was affected by different properties of clay minerals.

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

Apart from clay mineral, oxides and hydroxides of Al and Fe are also efficient adsorbents for POPs It has been observed that removal of soil iron oxides result in over 85% reduction of pentachlorophenol adsorption in soil (Diagboya et al., 2016). The bulk groups and unique surface structure enables it to form strong interactions with POPs. Ghose et al. (2010) reported the presence of absorbed water, terminal hydroxo group and aquo group on the interface structural of goethite. The adsorbed

water or hydroxyl group made great contributions to the adsorption capacity of oxides minerals. Carboxylate group of ciprofloxacin can form hydrogen-bonding with surface hydroxyl group on hydrous aluminum oxides (Gu and Karthikeyan, 2005). Ligand exchange on metal oxides has also been observed in adsorption of glyphosate on hydrous ferric oxides. Phosphonate group of glyphosate replace the adsorbed surface water/ hydroxyl on goethite and interact with iron ions, forming inner-sphere complexes (Sheals et al., 2002). Meanwhile, surficial metal ions play an important role in retention of POPs. Ciprofloxacin interact with hydrous iron oxides by forming six membered ring with surface iron (Gu and Karthikeyan, 2005). Likewise, phosphinic moiety of glufosinate can form stable monodentate complexation with surface Fe(III) centers of goethite (Xu et al., 2016). Zhao et al. (2017) also observed surface bidentate complex and bridging bidentate complex between diclofenac and goethite.

In addition to surface adsorption, microstructures of minerals are also important in retention of POPs (Deng et al., 2017a; Diagboya et al., 2016). For montmorillonite, an expandable phase, the interlayer microporosity provide additional adsorption site for benzene, while for kaolinite, the nonexpendable mineral, only external surface was available for benzene (Deng et al., 2017a). This also applies to metal oxides minerals. Micropores of metal oxides provide extra reactive site for adsorption. As a result, amorphous iron oxide had higher sorption capacity than crystalline iron oxides due to higher surface area (Kahle and Stamm, 2007). The nanometer-scale pores of minerals are in the form of interlamellar spaces of layer phyllosilicates/ aluminosilicate clay

and cavities/defects in oxides. They take up over 90% of total mineral surface areas (Cheng et al., 2012). In mineral micropores, the sorption capacity is much stronger than the bulk phase, as a result of pore-filling mechanism. However, steric effects inhibit diffusivity in micopores and prevent POPs from accessing sorption site of the micropores (Cheng et al., 2012; Xu et al., 2014; Zhao et al., 2014b). Irregular shaped micropores in minerals further impeded desorption of POPs from micropores (Woignier et al., 2012). Another mechanism contribute to the retention of POPs by mineral micropores is physical shielding, in which the adsorbed POPs are protected from extracellular enzymes degradation (Cheng et al., 2012). Therefore, mineral micropores with steric effects, physical shielding and pore-filling mechanisms also play a significant role in retention of POPs (Fig. 1).

2.2.2. Mineral-SOM complexes

Mineral are often covered with SOM as mineral-SOM complexes which exhibit different properties from the isolated ones, consequently influencing their adsorption capacity. The accessibility of sorption site on minerals could be blocked by organic matter. In the study of Pils and Laird (2007), clays had higher sorption capacity to tetracyclines than clays-HS complex. Interlayer diffusion of tetracyclines in clays-HS complex was impeded by interlayer adsorbed HS. Similarly, Arroyave et al. (2016) observed a decline in adsorption of glyphosate with increasing adsorbed HA on goethite, which was attributed to the occupation of active site at the goethite surface by the loaded HA, and the existence of electrostatic repulsion between adsorbed HA and glyphosate. However, Wang and Xing (2005) found that aliphatic portion of HA

were preferentially adsorbed on minerals than aromatic portion. This selective adsorption could lead to conformation changes of HA, and also enhanced mineral hydrophobicity and adsorption of phenanthrene by minerals. Zhang et al. (2017) also hydrophobic reported the enhanced interaction to phenanthrene 1,2,4,5-tetrachlorobenzene in HSs-clay complexes than the original minerals. In addition, HA may act as bridge linking tetracycline and kaolinite in low pH, which increase the adsorption of tetracycline onto kaolinite (Zhao et al., 2011). Therefore, FA have two different effects on glufosinate adsorption by goethite, on the one hand, FA compete with glufosinate for adsorption site on goethite, which inhibit adsorption of glufosinate; on the other hand, adsorbed FA increase the hydrophobic of goethite, which could promote the hydrophobic interactions of glufosinat. However, the competition effect overwhelmed the enhancement effect due to low octanol-water coefficient of glufosinat, as was observed by Xu et al. (2016).

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Moreover, it is important to understand the relative contribution of the exposed organic matter in SOM-mineral complex to the overall sorption process. Yang et al. (2012a) found that thickness of organic matter layer rather than minerals in the SOM-mineral complex dominated the bioavailability of phenanthrene. Also, Peng et al. (2015) examined the contribution of coated organic matter in HA-n-Fe₂O₃ complexes on adsorption of ofloxacin and norfloxacin. With 36% surface coverage on Fe₂O₃, HA take up over 80% of overall adsorption. It should be noticed that minerals determine the adsorption of POPs only when organic matter contents are very low in soil.

3. Transport of POPs in soil

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

The transport of POPs in soil is believed to be a combination of diffusion processes and medium-flow processes (Mechlińska et al., 2009) (Fig. 1). Diffusion is strongly related to the bioavailability of POPs (Johnsen et al., 2005). On the one hand, diffusion mass transfer of intraparticulate diffusion (IPD) and intraorganic matter diffusion (IOMD) are the primary process contributing to POPs sequestration in soil (Northcott and Jones, 2000). On the other hand, when POPs are too remote to be accessible by microorganism, diffusion process increases their bioavailability. Soil pores are the principal passway of medium-flow process, especially macropores which allow rapid and unrestricted movement of particle contaminants. Particulate or colloidal-form transport exists under two circumstances: contaminants are inherently particulates due to low solubility or the contaminants attach to otherwise harmless mobile particles (McGechan and Lewis, 2002; Sharma et al., 2013). The high specific surface areas enable colloids to effectively sorb low solubility and hydrophobic contaminants (Tavakkoli et al., 2015). Unlike sorption in static components that restrict movement of POPs, sorption onto mobile soil particles are demonstrated to be promotive in POPs transport not only at water-saturated media but also water unsaturated porous media in despite of some limitations, but in turn, this process is more likely to aggravate pollution (Knappenberger et al., 2014; Zeng et al., 2013b). Dissolved organic matter (DOM) is important to the transport of POPs. Organic amendment-derived DOM was documented to promote pesticides transport (Li et al., 2005). Bacteria may be physically connected to DOM and facilitate its direct contact

to micelles-associated contaminants (Schaefer and Juliane, 2007). Besides, DOM decreases interception probability of motile bacteria by surrounding soil particles, which contributes to the movement of bacteria (Haftka et al., 2008; Jimenez-Sanchez et al., 2015). Moreover, motile microorganisms are analogous to DOM that act as carriers for POPs (Gilbert et al., 2014). In this sense, both colloid-facilitated transport and motile microorganisms should be considered and the sorption to DOM is fundamental to degradation of adsorbed POPs. Therefore, investigation of their associations in POPs motility is expected to be followed.

4. Microbial adaptations to enhance bioavailability

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

Commonly, following sorption/desorption, POPs are transported to cellular membrane and are adsorbed by microorganism. This is the full bioavailability process, as described in the National Research Council report (Ehlers and Luthy, 2003). Sorption and transport are essential process for POPs to be available by microbes. However, when POPs are confronted with poor bioavailability conditions (e.g. strongly binding by SOM and minerals, steric hindrance between POPs and degrading solubility of POPs), microbial characteristics appear to be microorganism, low Therefore, various microbial adaptations to increase particularly important. bioavailability of POPs should be considered when studying the bioavailability process of POPs in soil. Microorganisms make a series of adjustments to bioavailability environmental changes (limited of chemicals), involving morphological, physiological and behavioral adaptation (Fig. 2) (Fester et al., 2014; Johnsen et al., 2005).

4.1. Morphological adaptation of microorganisms

In morphology, microbes develop multi-dimensional structure to increase the contact area with POPs, a typical example of which is fungal mycelia (Furuno et al., 2012). The formation of mycelia enables efficient mobilization of chemicals in soil, by the advantage of hyphal long-distance transport and also the possibility for hypha acrossing air-filled pores (Fester et al., 2014; Schamfuss et al., 2013). Furuno et al. (2012) confirmed active transport of vesicles-associated PAH within hyphal pipelines with the help of cytoplasmic streaming, leading to a more efficient distribution than diffusion mechanisms. This is consistent with the observation of Schamfuß et al. (2013), who further proved that mycelia-transported fluorene were bioavailable to bacteria, and proposed that this process was directed by passive uptake from PAH sources, active transfer within hyphae and diffusion-driven release. More recently, Otto et al. (2016) demonstrated that langal mycelia-promoted dispersal and spatial arrangement of microbial populations did enhance contaminant degradation.

In addition, it has been reported that anthracene-grown mycobacteria adapt to low solubility anthracene substrate by modifying cell surface properties, and show up to 70-fold higher attachment efficiency than glucose-grown mycobacteria (Wick et al., 2002a). Mycobacteria exhibit substrate-specific cell wall composition, with more mycolic acids in hydrophobic substrates (Wick et al., 2002b). Mycolic acids are hydrophobic fatty acid, and are believed to increase microbial adhesion to poor solubility substrate (Wick et al., 2003). Moreover, de Carvalho et al. (2009) observed cell surface charges change from negative to positive, which obviously stimulate

microbial access to negatively charged n-alkane. It can be seen that cell wall adaptation (composition and surface charge) is important response to poor bioavailable compounds.

4.2. Physiological adaptation of microorganisms

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

In physiology, microorganisms facilitate POPs transfer either by decreasing transport distance to POPs (e.g. microbial attachment), or by steepening chemical gradient of substrate sources and accelerating diffusive transfer/desorption (Wick et al., 2002a). Formation of biofilm on contaminants-sources is important to get over mass-transfer restrictions in low bioavailability matrix (poorly soluble and strongly adsorbed PAH) (Johnsen and Karlson, 2004; Zhang et al., 2012). The secretion of extracellular polymeric substances, presence of glycolipid or glycopeptidolipid on the mycobacterial cell wall, and a more hydrophobic cell surface potentially facilitate this process (Zhang et al., 2016; Zhang et al., 2015b). The importance and properties of microbial attachment was highlighted by Yang et al. (2010), where phenanthrene was much strongly adsorbed on wax than cellulose, but wax-adsorbed phenanthrene had comparable degradability to cellulose-adsorbed phenanthrene. This was ascribed to more hydrophobic surface of wax (i.e., abundant paraffinic carbons) favorable to bacterial adhesion. The attached bacteria had higher degradation rates due to shorter distance (Yang et al., 2010). They also suggested that association with aromatic moieties of HSs would inhibit immediate bioavailability of phenanthrene, but association with paraffinic carbon domains could be rapidly degraded, due to different potency of sorption domains to be microbial attachment (Yang et al., 2012a). As is the

same case with SOM, POPs interaction with different minerals show different tendency to be available by microorganism. In a recent work done by Zhao et al. (2014a), metabolic activities of *Pseudomonas putida* and biodegradation of methyl parathion were enhanced by kaolinite but suppressed by goethite. Interfacial interactions of cellular surfaces with mineral particles were responsible for this phenomenon. Bacteria cells were loosely attached to larger particles of kaolinite, and this kind of interactions facilitated use of adsorbed substrate and then stimulated bacterial activity. By contrast, bacterial cells were tightly bound to small particles of goethite, which limited diffusion of adsorbed substrates, thereby inhibiting biodegradation (Zhao et al., 2014a). It can be seen that the promotive effect of microbial attachment to bioavailability is sorbent structure dependent.

Besides, microorganisms release surface active molecules (e.g. biosurfactants) to imcrease bioavailability (Zhang et al., 2013). On the one hand, biosurfactant decrease interfacial tensions of contaminant and promote its solubility and mobility. This is realized by micellar solubilization of POPs or direct modification of the contaminant matrix (*i.e.* decrease of soil-water interfacial tension) (Adrion et al., 2016; Bezza and Chirwa, 2017; Garcia et al., 2001; Singleton et al., 2016). On the other hand, hydrophobicity of the cell surface and its association with hydrophobic substrates are enhanced by biosurfactants (Pacwa-Płociniczak et al., 2011).

In addition, electron shuttles (e.g., riboflavin, flavin mononucleotide, phenazines) secreted by some microorganisms, especially those with extracellular respiration pattern, are able to transfer electrons between the cell surface and POPs, thus

facilitating redox biotransformation (Van der Zee and Cervantes, 2009; Yang et al., 2012b). Under anaerobic conditions, extracellular respiration bacteria oxidize electron donor (organic matter) and transport electrons to exogenous electron acceptor, from which the microorganisms get energy and growth. There are two ways of extracellular electron transfer: electrons can be directly transported from cell outer membrane cytochromes or bacterial nanowires to extracellular acceptors; moreover, electrons can be indirectly transported by electron shuttles, including microbial secretions and naturally occurring carbon (Peng et al., 2016; You et al., 2015; Yu et al., 2015). The second ways enable microorganisms overcome the limitation of direct contact with POPs, thus increasing POPs bioavailability.

4.3. Behavioral adaptation of microorganisms

Behavioral adaptation include chemotaxis (microbes are apt to access contaminants in the drive of chemical gradient) and swimming modes (enable microbes to move following water and airborne chemical gradients) (Fester et al., 2014). It has been reported that chemotactic movement of bacteria to pollutants increases bioavailability (Krell et al., 2013). Bacterial taxis help to overcome its dispersal limitation of retention by soil particles (Ortega-Calvo et al., 2013). Moreover, microbial movement by self-propulsion accelerated POPs transport, a process called co-transport. Co-transport of POPs with motile microorganisms is extremely important as the high tendency of POPs to be sequestrated in soil, which could also enhance their accessibility to degrading microorganisms (Gilbert et al., 2014).

4.4. Microbial access to adsorbed POPs

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

Given the adaptation of microorganisms, more than just in dissolved phase, POPs in adsorbed state can be available to microorganisms. Two possible ways are offered concerning bioavailability of adsorbed POPs (Chen and Ding, 2012): (i) soil-adsorbed POPs should be released to aqueous phase with the help of biosurfactant before biodegradation; and(ii) adsorbed POPs can be degraded directly by attached cell or by extracellular enzyme. It seems from above that desorption is not a limiting factor to bioavailability. Marchal et al. (2013) proved that phenanthrene adsorbed to compost, activated carbon and charcoal was desorbed to different extent but with similar degradation amount, in the presence of abundant bacteria and/or the production of biosurfactant or biofilms. Nevertheless, compared with the adsorbed contaminant, the dissolved form in pore water is considered to be more bioavailable (Megharaj et al., 2011), which is in accordance with a recent study where carbonaceous amendments strongly adsorb 2,2',4,4'-tetrabrominated biphenyl ether and reduce its bioavailability to degrading microorganisms (Zhu et al., 2016). Moreover, it was reported that not until the exhaustion of readily available forms (dissolved fraction and reversibly adsorbed fraction) could the adsorbed phenanthrene be available to microbes (Yang et al., 2009). Various ways of microorganism accessing to POPs can be seen in Fig. 3. The dissolved fractions of POPs are readily available to microorganisms. However, due to microbial adaptations, POPs that are absorbed in soil can also be utilized by microorganisms. Direct adhesion to adsorbed POPs, production of extracellular enzyme and biosurfactant are possible ways of microorganism accessing the adsorbed POPs. The behaviors of microbial attachment and extracellular enzyme secretion lead to direct degradation of POPs. Besides, biosurfactant contributes to desorption of POPs and facilitate microbial uptake.

5. Conclusions and Future perspectives

This paper reviewed bioavailability related mechanisms of POPs, including molecular-scaled mechanisms governing sorption and transport of POPs and the biological behaviors of microorganisms related to bioavailability. It can be seen that bioavailability of POPs is not only determined by the sorption behavior of SOM and minerals, but also by the DOM/colloid particles/motile microorganisms-facilitated transport. Other than physicochemical factors, this is also affected by microbial adaptations in low bioavailability conditions. Thus, the bioavailability mechanisms of POPs in soil are complicated and different factors should be considered. Following aspects are highlighted in future research:

(1) To what extent the POPs are adsorbed in a specific biogeochemical environment needs to be clarified. Most adsorption reactions in soil are spontaneous and exothermic process, and the adsorption extent decrease with higher temperature (Lamichhane et al., 2016). Besides, soil pH determines the surface charge of SOM and minerals, and the existing forms of POPs, which has significant impact on charge-dependent adsorption process (Wang et al., 2013a; Zeng et al., 2014). Under extreme pH conditions, both soil matrix and POPs are positive/negative charged. In such case, the electrostatic repulsion would weaken the sorption interactions. The impact of ionic strength is much more complex. High ionic strength would affect the

electrostatic forces and the hydrophobic interaction or compete for adsorption site with sorbate, but have little impact on surface complexation (Tang et al., 2010; Wang et al., 2013a; Wu et al., 2015b; Zeng et al., 2014). In view of these cases, specific soil conditions, such as temperature, pH and ionic strength should be considered during the sorption studies. Moreover, the microenvironment of SOM or minerals should be taken into account. SOM and minerals interact together to form tortuous and porous soil particles, which make sorption of POPs different from the respective ones. Therefore, it is important to observe the structural characteristics of soil sorbents and spatial distribution of POPs in soil particles at a micrometer scale.

(2) Microbial adaptations to increase bioavailability of POPs have been observed. This also has significant implications in soil remediation. For example, Section of biosurfactant is an important microbial response to relieve the bioavailability limitations. Some studies reported that external added surfactants could also enhance biodegradation of PAH and other hydrophobic contaminants (Adrion et al., 2016; Bezza and Chirwa, 2017; Singleton et al., 2016). However, it should be noted that surfactant-enlanced biodegradation is effective only when the POPs are hydrophobic and highly unavailable. As reported by Bezza and Chirwa (2017), addition of lipopeptidal biosurfactant had no apparent effect on the biodegradation of low molecular weight (LMW) PAHs, but significantly increased the biodegradation rate of high molecular weight (HMW) PAHs. LMW PAHs had comparatively high aqueous solubility and were free of bioavailability restrictions to biodegradation. Microbial remediation has been criticized for the low removal rate of HMW POPs. We can

therefore combine the surfactants with bioremediation, making all levels of POPs availabile to degrading bacteria.

(3) We suggest that studying bioavailability of POPs is a good research idea in soil remediation. Since soil amendments, such as compost, hydroxyapatite (Zeng et al., 2017), nanomaterial (Gong et al., 2009; Xu et al., 2012) and biochar are widely used to remediate soil contamination, it is essential to study how those amendments affect the bioavailability of POPs to allow them to exert best effect on soil remediation. For example, composts with abundant organic matter could decrease bioavailability of POPs due to the increased sorption (Puglisi et al., 2007; Wu et al., 2013). However, the HA-like compounds in the compost could be taken as biosurfactant and increase biodegradation of PAH (Kobayashi et al., 2009, Wu et al., 2013). Soil microbial activity could also be enhanced after addition of compost (Puglisi et al., 2007). The contradictory effect on bioavailability of POPs could be determined by different components and microorganisms, in compost.

Acknowledgements

- 545 The work was supported by the National Natural Science Foundation of China
- 546 (51521006, 51579096, 51409024, 51508175), the National Program for Support of
- Top-Notch Young Professionals of China (2012).

References

- Adrion, A.C., Nakamura, J., Shea, D., Aitken, M.D., 2016. Screening Nonionic
- Surfactants for Enhanced Biodegradation of Polycyclic Aromatic

- Hydrocarbons Remaining in Soil After Conventional Biological Treatment.
- 552 Environ. Sci. Technol. 50(7), 3838-3845.
- Arroyave, J.M., Waiman, C.C., Zanini, GP., Avena, M.J., 2016. Effect of humic acid
- on the adsorption/desorption behavior of glyphosate on goethite. Isotherms
- and kinetics. Chemosphere 145, 34-41.
- Bezza, F.A., Chirwa, E.M.N., 2017. The role of lipopeptide biosurfactant on microbial
- remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated
- soil. Chem. Eng. J. 309, 563-576.
- Chefetz, B., Xing, B.S., 2009. Relative Role of Aliphatic and Aromatic Moieties as
- Sorption Domains for Organic Compounds: A Review. Environ. Sci. Technol.
- 561 43, 1680-1688.
- 562 Chen, B.L, Ding, J., 2012. Biosorption and biodegradation of phenanthrene and
- pyrene in sterilized and unsterilized soil slurry systems stimulated by
- Phanerochaete chrysosporium. J. Hazard. Mater. 229, 159-69.
- 565 Cheng, H.F., Hu, E., Hu, Y.A., 2012. Impact of mineral micropores on transport and
- fate of organic contaminants: a review. J. Contam. Hydrol. 129, 80-90.
- Cornelissen, G., Gustafsson, Ö., Bucheli, T.D., Jonker, M.T.O., Koelmans, A.A., Van
- Noort, P.C.M., 2005. Extensive sorption of organic compounds to black
- carbon, coal, and kerogen in sediments and soils: Mechanisms and
- consequences for distribution, bioaccumulation, and biodegradation. Environ.
- 571 Sci. Technol. 39, 6881-6895.
- de Carvalho, C.C.C.R., Wick, L.Y., Heipieper, H.J., 2009. Cell wall adaptations of

- planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to
- 574 C16 n-alkane hydrocarbons. Appl. Microbiol. Biotechnol. 82, 311-320.
- 575 Deng, L., Yuan, P., Liu, D., Annabi-Bergaya, F., Zhou, J., Chen, F., Liu, Z., 2017a.
- Effects of microstructure of clay minerals, montmorillonite, kaolinite and
- halloysite, on their benzene adsorption behaviors. Appl. Clay Sci. 143,
- 578 184-191.
- 579 Deng, Y.C., Tang, L., Zeng, G.M., Zhu, Z.J., Yan, M., Zhou, Y.Y., Wang, J.J., Liu, Y.N.,
- Wang, J.J., 2017b. Insight into highly efficient simultaneous photocatalytic
- removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by
- phosphorus doped porous ultrathin g-C₃N₄ nanosheets from aqueous media:
- Performance and reaction mechanism. Appl Catal B-Environ. 203, 343-354.
- Diagboya, P.N., Olu-Owolabi, B.I., Adebowale, K.O., 2016. Distribution and
- interactions of pentachlorophenol in soils: The roles of soil iron oxides and
- organic matter. J. Contam. Hydrol. 191, 99-106.
- Ehlers, L.J., Luthy, R.G., 2003. Peer Reviewed: Contaminant Bioavailability in Soil
- and Sediment. Environ. Sci. Technol. 37, 295A-302A.
- Fester, T., Giebler, J., Wick, L.Y., Schlosser, D., Kästner, M., 2014. Plant-microbe
- interactions as drivers of ecosystem functions relevant for the biodegradation
- of organic contaminants. Curr. Opin. Biotechnol. 27, 168-75.
- 592 Furuno, S., Foss, S., Wild, E., Jones, K.C., Semple, K.T., Harms, H., Wick, L.Y., 2012.
- Mycelia Promote Active Transport and Spatial Dispersion of Polycyclic
- Aromatic Hydrocarbons. Environ. Sci. Technol. 46, 5463-5470.

- 595 Garcia, J.M., Wick, L.Y., Harms, H., 2001. Influence of the nonionic surfactant Brij
- 596 35 on the bioavailability of solid and sorbed dibenzofuran. Environ. Sci.
- 597 Technol. 35, 2033-2039.
- 598 Ghose, S.K., Waychunas, G.A., Trainor, T.P., Eng, P.J., 2010. Hydrated goethite
- (alpha-FeOOH) (100) interface structure: Ordered water and surface
- functional groups. Geochim. Cosmochim. Ac. 74, 1943-1953.
- 601 Gilbert, D., Jakobsen, H.H., Winding, A., Mayer, P., 2014. Co-Transport of Polycyclic
- Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass
- Transfer under Diffusive Conditions. Environ. Sci. Technol. 48, 4368-4375.
- 604 Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., Liang,
- Y., 2009. Removal of cationic dyes from aqueous solution using magnetic
- multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater.
- 607 164, 1517-1522.
- 608 Gu, C., Karthikeyan, K.G., 2005. Sorption of the antimicrobial ciprofloxacin to
- aluminum and iron hydrous oxides. Environ. Sci. Technol. 39, 9166-9173.
- 610 Guo, X.Y., Wang, X.L., Zhou, X.Z., Kong, X.Z., Tao, S., Xing, B.S., 2012. Sorption
- of four hydrophobic organic compounds by three chemically distinct polymers:
- role of chemical and physical composition. Environ. Sci. Technol. 46, 7252-9.
- Haftka, J.J.H., Parsons, J.R., Govers, H.A.J., Ortega-Calvo, J.J., 2008. Enhanced
- kinetics of solid-phase microextraction and biodegradation of polycyclic
- aromatic hydrocarbons in the presence of dissolved organic matter. Environ.
- Toxicol. Chem. 27, 1526-1532.

- 617 Han, L.F., Sun, K., Jin, J., Wei, X., Xia, X.H., Wu, F.C., Gao, B., Xing, B.S., 2014.
- Role of structure and microporosity in phenanthrene sorption by natural and
- engineered organic matter. Environ. Sci. Technol. 48, 11227-34.
- 620 Hu, X.J., Wang, J.S., Liu, Y.G, Li, X., Zeng, GM., Bao, Z.l., Zeng, X.X., Chen, A.W.,
- Long, F., 2011. Adsorption of chromium (VI) by ethylenediamine-modified
- cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics.
- 623 J. Hazard. Mater. 185, 306-314.
- Hur, J., Lee, D.H., Shin, H.S., 2009. Comparison of the structural, spectroscopic and
- phenanthrene binding characteristics of humic acids from soils and lake
- sediments. Org. Geochem. 40, 1091-1099.
- Jimenez-Sanchez, C., Wick, L.Y., Cantos, M., Ortega-Calvo, J.J., 2015. Impact of
- dissolved organic matter on bacterial factic motility, attachment, and transport.
- Environ. Sci. Technol. 49, 4498-505.
- 630 Jin, J., Sun, K., Wang, Z.Y., Han, L.F., Pan, Z.Z., Wu, F.C., Liu, X.T., Zhao, Y., Xing,
- B.S., 2015. Characterization and phthalate esters sorption of organic matter
- fractions isolated from soils and sediments. Environ. Pollut. 206, 24-31.
- Johnsen, A.R., Karlson, U., 2004. Evaluation of bacterial strategies to promote the
- bioavailability of polycyclic aromatic hydrocarbons. Appl. Microbiol.
- 635 Biotechnol. 63, 452-9.
- Johnsen, A.R., Wick, L.Y., Harms, H., 2005. Principles of microbial PAH-degradation
- 637 in soil. Environ. Pollut. 133, 71-84.
- Kahle, M., Stamm, C., 2007. Time and pH-dependent sorption of the veterinary

- antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere 68,
- 640 1224-1231.
- 641 Kang, F., Ge, Y., Hu, X., Goikavi, C., Waigi, M.G., Gao, Y., Ling, W., 2016.
- Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and
- smectite clays via a comparative computational study. J. Hazard. Mater. 320,
- 644 80-87.
- Keiluweit, M., Kleber, M., 2009. Molecular-Level Interactions in Soils and Sediments:
- The Role of Aromatic pi-Systems. Environ. Sci. Technol. 43, 3421-3429.
- Kickham, P., Otton, S.V., Moore, M.M., Ikonomou, M.G., Gobas, F.A.P.C., 2012.
- Relationship between biodegradation and sorption of phthalate esters and their
- metabolites in natural sediments. Environ. Toxicol. Chem. 31, 1730-1737.
- Knappenberger, T., Flury, M., Mattson, E.D., Harsh, J.B., 2014. Does Water Content
- or Flow Rate Control Colloid Transport in Unsaturated Porous Media?
- Environ. Sci. Technol. 48, 3791-3799.
- Kobayashi, T., Murai Y., Tatsumi, K., Iimura, Y., 2009. Biodegradation of polycyclic
- aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable
- organic matter from manure compost. Sci. Total Environ. 407, 5805-10.
- 656 Krell, T., Lacal, J., Reyes-Darias, J.A., Jimenez-Sanchez, C., Sungthong, R.,
- Ortega-Calvo, J.J., 2013. Bioavailability of pollutants and chemotaxis. Curr.
- 658 Opin. Biotechnol. 24, 451-6.
- 659 Lamichhane, S., Krishna, K.C.B., Sarukkalige, R., 2016. Polycyclic aromatic
- 660 hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 148,

- 661 336-353.
- 662 Li, K., Xing, B.S., Torello, W.A., 2005. Effect of organic fertilizers derived dissolved
- organic matter on pesticide sorption and leaching. Environ. Pollut. 134,
- 664 187-194.
- 665 Li, Z., Fitzgerald, N.M., Albert, Z., Schnabl, A., Jiang, W.-T., 2015. Contrasting
- mechanisms of metoprolol uptake on kaolinite and talc. Chem. Eng. J. 272,
- 667 48-57.
- 668 Lima, D.L., Schneider, R.J., Esteves, V.I., 2012. Sorption behavior of EE2 on soils
- subjected to different long-term organic amendments. Sci. Total Environ. 423,
- 670 120-4.
- Liu, W.X., Xu, S.S., Xing, B.S., Pan, B., Tao, S., 2010. Nonlinear binding of
- phenanthrene to the extracted fulvic acid fraction in soil in comparison with
- other organic matter fractions and to the whole soil sample. Environ. Pollut.
- 674 158, 566-75.
- 675 Liu, Y.Y., Zeng, Z.T. Zeng, G.M., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X.X., Wu,
- M.S., Ren, P.Y., Liu, Z.F., Chen, M., Xie, G.X., 2012. Immobilization of
- laccase on magnetic bimodal mesoporous carbon and the application in the
- removal of phenolic compounds. Bioresour. Technol. 115, 21-26.
- Marchal, G, Smith, K.E.C., Rein, A., Winding, A., Trapp, S., Karlson, U.G., 2013.
- Comparing the desorption and biodegradation of low concentrations of
- phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere.
- 682 90, 1767-78.

- Marco-Brown, J.L., Alcira Trinelli, M., Gaigneaux, E.M., Torres Sanchez, R.M., dos
- Santos Afonso, M., 2015. New insights on the structure of the
- picloram-montmorillonite surface complexes. J. Colloid Interface Sci. 444,
- 686 115-122.
- McGechan, M.B., Lewis, D.R., 2002. SW—Soil and Water: Transport of particulate
- and colloid-sorbed contaminants through soil, part 1: General principles.
- 689 Biosyst. Eng. 83, 255-273.
- 690 Mechlińska, A., Gdaniec-Pietryka, M., Wolska, L., Namieśnik, J., 2009. Evolution of
- models for sorption of PAHs and PCBs on geosorbents. Trac-Trend. Anal.
- 692 Chem. 28, 466-482.
- 693 Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N., Naidu, R.,
- 694 2011. Bioremediation approaches for organic pollutants: a critical perspective.
- 695 Environ. Int. 37, 1362-1375
- Mitchell, P.J., Simpson, M.J., 2013. High affinity sorption domains in soil are blocked
- by polar soil organic matter components. Environ. Sci. Technol. 47, 412-9.
- 698 Northcott, G.L., Jones, K.C., 2000. Experimental approaches and analytical
- techniques for determining organic compound bound residues in soil and
- sediment. Environ. Pollut. 108, 19-43.
- Ortega-Calvo, J.J., Harmsen, J., Parsons, J.R., Semple, K.T., Aitken, M.D., Ajao, C.,
- Eadsforth, C., Galay-Burgos, M., Naidu, R., Oliver, R., Peijnenburg, W.J.G.,
- Römbke, J., Streck, G., Versonnen, B., 2015. From Bioavailability Science to
- Regulation of Organic Chemicals. Environ. Sci. Technol. 49, 10255-64.

- 705 Ortega-Calvo, J.J., Tejeda-Agredano, M.C., Jimenez-Sanchez, C., Congiu, E.,
- Sungthong, R., Niqui-Arroyo, J.L., Cantos, M., 2013. Is it possible to increase
- bioavailability but not environmental risk of PAHs in bioremediation? J.
- 708 Hazard. Mater. 261, 733-45.
- Otto, S., Banitz, T., Thullner, M., Harms, H., Wick, L.Y., 2016. Effects of Facilitated
- Bacterial Dispersal on the Degradation and Emission of a Desorbing
- 711 Contaminant. Environ. Sci. Technol. 50, 6320-6326.
- Pacwa-Płociniczak, M., Płaza, G.A., Piotrowska-Seget, Z., Cameotra, S.S., 2011.
- Environmental Applications of Biosurfactants: Recent Advances. Int. J. Mol.
- 714 Sci. 12, 633.
- Peng, H., Liang, N., Li, H., Chen, F., Zhang, D., Pan, B., Xing, B., 2015. Contribution
- of coated humic acids calculated through their surface coverage on nano iron
- oxides for ofloxacin and norfloxacin sorption. Environ. Pollut. 204, 191-198.
- 718 Peng, L., Zhang, X.T., Yin, J., Xu, S.Y., Zhang, Y., Xie, D.T., Li, Z.L., 2016.
- Geobacter sulfurreducens adapts to low electrode potential for extracellular
- electron transfer. Electrochim. Acta 191, 743-749.
- Pils, J.R.V., Laird, D.A., 2007. Sorption of tetracycline and chlortetracycline on K-
- and Ca-saturated soil clays, humic substances, and clay-humic complexes.
- 723 Environ. Sci. Technol. 41, 1928-1933.
- Puglisi, E., Cappa, F., Fragoulis, G., Trevisan, M., Del Re, A.A.M., 2007.
- Bioavailability and degradation of phenanthrene in compost amended soils.
- 726 Chemosphere. 67, 548-56.

- Riding, M.J., Doick, K.J., Martin, F.L., Jones, K.C., Semple, K.T., 2013. Chemical
- measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to
- 729 application. J. Hazard. Mater. 261, 687-700.
- 730 Rončević, S., Spasojević, J., Maletić, S., Jazić, J.M., Isakovski, M.K., Agbaba, J.,
- Grgić, M., Dalmacija, B., 2016. Assessment of the bioavailability and
- phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.
- 733 Environ. Sci. Pollut. Res. Int. 23, 3239-46.
- Schaefer, M., Juliane, F., 2007. The influence of earthworms and organic additives on
- the biodegradation of oil contaminated soil. Appl. Soil Ecol. 36, 53-62.
- Schamfuß, S., Neu, T.R., van der Meer, J.R., Tecon, R., Harms, H., Wick, L.Y., 2013.
- Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria.
- 738 Environ. Sci. Technol. 47, 6908-15.
- Semple, K.T., Doick, K.J., Wick, L.Y., Harms, H., 2007. Microbial interactions with
- organic contaminants in soil: definitions, processes and measurement. Environ.
- 741 Pollut. 150, 166-76.
- Semple, K.T., Riding, M.J., McAllister, L.E., Sopena-Vazquez, F., Bending, G.D.,
- 743 2013 Impact of black carbon on the bioaccessibility of organic contaminants
- 744 in soil. J. Hazard. Mater. 261, 808-16.
- Sharma, P., Mayes, M.A., Tang, G.P., 2013. Role of soil organic carbon and colloids in
- sorption and transport of TNT, RDX and HMX in training range soils.
- 747 Chemosphere. 92, 993-1000.
- Sheals, J., Sjoberg, S., Persson, P., 2002. Adsorption of glyphosate on goethite:

- Molecular characterization of surface complexes. Environ. Sci. Technol. 36,
- 750 3090-3095.
- 751 Shi, X., Ji, L.L., Zhu, D.Q., 2010. Investigating roles of organic and inorganic soil
- components in sorption of polar and nonpolar aromatic compounds. Environ.
- 753 Pollut. 158, 319-24.
- Singh, N., Berns, A.E., Hennecke, D., Hoerner, J., Koerdel, W., Schaeffer, A., 2010.
- 755 Effect of soil organic matter chemistry on sorption of trinitrotoluene and
- 756 2,4-dinitrotoluene. J. Hazard. Mater. 173, 343-8.
- 757 Singleton, D.R., Adrion, A.C., Aitken, M.D., 2016. Surfactant-induced bacterial
- 758 community changes correlated with increased polycyclic aromatic
- hydrocarbon degradation in contaminated soil. Appl. Microbiol. Biotechnol.
- 760 100(23), 10165-10177.
- 761 Stroud, J.L., Paton, GI., Semple, K.T., 2007. Microbe-aliphatic hydrocarbon
- interactions in soil: implications for biodegradation and bioremediation. J.
- 763 Appl. Microbiol. 102, 1239-1253.
- Sun, K., Ran, Y., Yang, Y., Xing, B.S., Mao, J.D., 2013. Interaction mechanism of
- benzene and phenanthrene in condensed organic matter: Importance of
- adsorption (nanopore-filling). Geoderma. 204, 68-74.
- 767 Tang, C.Y., Fu, Q.S., Gao, D., Criddle, C.S., Leckie, J.O., 2010. Effect of solution
- chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.
- 769 Water Res. 44, 2654-2662.
- 770 Tang, L., Wang, J.J., Zeng, G.M., Liu, Y.N., Deng, Y.C., Zhou, Y.Y., Tang, J., Wang,

- J.J., Guo, Z., 2016. Enhanced photocatalytic degradation of norfloxacin in
- aqueous Bi₂WO₆ dispersions containing nonionic surfactant under visible light
- irradiation. J. Hazard. Mater. 306, 295-304.
- Tang, L., Yang, G.D., Zeng, G.M., Cai, Y., Li, S.S., Zhou, Y.Y., Pang, Y., Liu, Y.Y.,
- Zhang, Y., Luna, B., 2014. Synergistic effect of iron doped ordered
- mesoporous carbon on adsorption-coupled reduction of hexavalent chromium
- and the relative mechanism study. Chem. Eng.J. 239, 114-122.
- 778 Tang, L., Zeng, G.M., Shen, G.L., Li, Y.P., Zhang, Y., Huang, D.L., 2008. Rapid
- Detection of Picloram in Agricultural Field Samples Using a Disposable
- 780 Immunomembrane-Based Electrochemical Sensor, Environ. Sci. Technol. 42,
- 781 1207-1212.
- 782 Tavakkoli, E., Juhasz, A., Donner, E., Lombi, E., 2015. Characterising the
- exchangeability of phenanthrene associated with naturally occurring soil
- colloids using an isotopic dilution technique. Environ. Pollut. 199, 244-52.
- Uddin, M.K., 2017. A review on the adsorption of heavy metals by clay minerals, with
- special focus on the past decade. Chem. Eng.J. 308, 438-462.
- Van der Zee, F.P., Cervantes, F.J., 2009. Impact and application of electron shuttles on
- the redox (bio)transformation of contaminants: A review. Biotechnol. Adv. 27,
- 789 256-277.
- Wang, A., Li, S., Teng, Y., Liu, W., Wu, L., Zhang, H., Huang, Y., Luo, Y., Christie, P.,
- 791 2013a. Adsorption and desorption characteristics of diphenylarsenicals in two
- 792 contrasting soils. J. Environ. Sci. (China) 25, 1172-1179.

- Wang, C.J., Li, Z., Jiang, W.T., 2011a. Adsorption of ciprofloxacin on 2:1 dioctahedral
- 794 clay minerals. Appl. Clay Sci. 53, 723-728.
- Wang, H., Yuan, X., Wang, H., Chen, X., Wu, Z., Jiang, L., Xiong, W., Zhang, Y.,
- Zeng, G., 2015. One-step calcination method for synthesis of mesoporous
- 797 g-C₃N₄/NiTiO₃ heterostructure photocatalyst with improved visible light
- 798 photoactivity. Rsc Adv. 5, 95643-95648.
- Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G, Zhong, H., Liang, J., Ren,
- M., 2013b. Graphene-based materials: Fabrication, characterization and
- application for the decontamination of wastewater and wastegas and hydrogen
- storage/generation. Adv. Colloid Interfac. 195, 19-40.
- 803 Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., Wang, X., Lin, N., Qi, Y.,
- 2013c. Adsorption characteristics and behaviors of graphene oxide for Zn(II)
- removal from aqueous solution. Appl. Surf. Sci. 279, 432-440.
- Wang, K.J., Xing, B.S., 2005 Structural and Sorption Characteristics of Adsorbed
- Humic Acid on Clay Minerals. J. Environ. Qual. 34, 342-349.
- Wang, X.L., Guo, X.Y., Yang, Y., Tao, S., Xing, B.S., 2011b. Sorption mechanisms of
- phenanthrene, lindane, and atrazine with various humic acid fractions from a
- single soil sample. Environ. Sci. Technol. 45, 2124-30.
- Wick, L.Y., Pasche, N., Bernasconi, S.M., Pelz, O., Harms, H., 2003. Characterization
- of multiple-substrate utilization by anthracene-degrading Mycobacterium
- frederiksbergense LB501T. Appl. Environ. Microb. 69, 6133-6142
- Wick, L.Y., de Munain, A.R., Springael, D., Harms, H., 2002a. Responses of

- Mycobacterium sp. LB501T to the low bioavailability of solid anthracene.
- Appl. Microbiol. Biotechnol. 58, 378-85.
- Wick, L.Y., Wattiau, P., Harms, H., 2002b. Influence of the growth substrate on the
- mycolic acid profiles of mycobacteria. Environ. Microbiol. 4, 612-616.
- Woignier, T., Clostre, F., Macarie, H., Jannoyer, M., 2012. Chlordecone retention in
- the fractal structure of volcanic clay. J. Hazard. Mater. 241-242, 224-30.
- Wu, G.Z., Kechavarzi, C., Li, X.G., Sui, H., Pollard, S.J.T., Coulon, F., 2013.
- Influence of mature compost amendment on total and bioavailable polycyclic
- aromatic hydrocarbons in contaminated soils. Chemosphere. 90, 2240-6.
- 824 Wu, Q.Q., Yang, Q., Zhou, W.J., Zhu, L.Z., 2015a. Sorption characteristics and
- contribution of organic matter fractions for atrazine in soil. J. Soil Sediment.
- 826 15, 2210-2219.
- 827 Wu, Y., Luo, H., Wang, H., Zhang, L., Liu, P., Feng, L., 2014. Fast adsorption of
- nickel ions by porous graphene oxide/sawdust composite and reuse for phenol
- degradation from aqueous solutions. J. Colloid Interf. Sci. 436, 90-98.
- 830 Wu, Y., Si, Y., Zhou, D., Gao, J., 2015b. Adsorption of diethyl phthalate ester to clay
- minerals. Chemosphere. 119, 690-696.
- 832 Xu, H., Qu, X., Li, H., Gu, C., Zhu, D., 2014. Sorption of Tetracycline to
- Varying-Sized Montmorillonite Fractions. J. Environ. Qual. 43, 2079-2085.
- Xu, J., Gu, X., Guo, Y., Tong, F., Chen, L., 2016. Adsorption behavior and mechanism
- of glufosinate onto goethite. Sci. Total Environ. 560, 123-130.
- Xu, P., Zeng, GM., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z.,

- Huang, C., Xie, G.X., Liu, Z.F., 2012. Use of iron oxide nanomaterials in
- wastewater treatment: A review. Sci. Total Environ. 424, 1-10.
- Yang, Y., Hunter, W., Tao, S., Gan, J., 2009. Microbial Availability of Different Forms
- of Phenanthrene in Soils. Environ. Sci. Technol. 43, 1852-1857.
- Yang, Y., Shu, L., Wang, X.L., Xing, B.S., Tao, S., 2012a. Mechanisms regulating
- bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.
- 843 Environ. Toxicol. Chem. 31, 1431-7.
- Yang, Y., Shu, L., Wang, X.L., Xing, B.S., Tao, S., 2010. Effects of Composition and
- Domain Arrangement of Biopolymer Components of Soil Organic Matter on
- the Bioavailability of Phenanthrene. Environ. Sci. Technol. 44, 3339-3344.
- Yang, Y.G., Xu, M.Y., Guo, J., Sun, GP., 2012b. Bacterial extracellular electron
- transfer in bioelectrochemical systems. Process. Biochem. 47, 1707-1714.
- 849 You, L.X., Rao, L., Tian, X.C., Wu, R.R., Wu, X., Zhao, F., Jiang, Y.X., Sun, S.G.,
- 2015. Electrochemical in situ FTIR spectroscopy studies directly extracellular
- electron transfer of Shewanella oneidensis MR-1. Electrochim. Acta. 170,
- 852 131-139.
- Yu, L., Yuan, Y., Tang, J., Wang, Y., Zhou, S., 2015. Biochar as an electron shuttle for
- reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens.
- 855 Sci. Rep. 5.
- 856 Zeng, F., He, Y., Lian, Z., Xu, J., 2014. The impact of solution chemistry of
- electrolyte on the sorption of pentachlorophenol and phenanthrene by natural
- hematite nanoparticles. Sci. Total Environ. 466, 577-585.

- Zeng, GM., Chen, M., Zeng, Z.T., 2013a. Risks of Neonicotinoid Pesticides. Science.
- 860 340, 1403-1403.
- Zeng, GM., Chen, M., Zeng, Z.T., 2013b. Shale gas: surface water also at risk. Nature.
- 862 499, 154-154.
- Zeng G.M., Wan J., Huang D.L., Hu L., Huang C., Cheng M., Xue W.J., Gong X.M,
- Wang R.Z., Jiang D.N., 2017. Precipitation, adsorption and rhizosphere effect:
- The mechanisms for Phosphate-induced Pb immobilization in soils—A review.
- J. Hazard. Mater. 339, 354-367.
- Zhang, D., Zhu, L., Li, F., 2013. Influences and mechanisms of surfactants on pyrene
- biodegradation based on interactions of surfactant with a Klebsiella oxytoca
- strain. Bioresour. Technol. 142, 454-461
- 870 Zhang, L., Xiang, P., Bao, X., Xiong, M. Liu, F., 2017. The Influence of Humic
- Substances on the Sorption of Three Organic Contaminants with Different
- Structure and Polarity to Clay Minerals. Water Air Soil Poll. 228.
- Zhang, M., Shen, X.F., Zhang, H.Y., Cai, F., Chen, W.X., Gao, Q., Julio Ortega-Calvo,
- J., Tao, S., Wang, X.L., 2016. Bioavailability of phenanthrene and
- nitrobenzene sorbed on carbonaceous materials. Carbon. 110, 404-413.
- 876 Zhang, R.M., Yan, W., Jing, C.Y., 2015a. Experimental and molecular dynamic
- simulation study of perfluorooctane sulfonate adsorption on soil and sediment
- components. J. Environ. Sci (China). 29, 131-8.
- Zhang, Y.L., Ma, X.X., Ran, Y., 2014. Sorption of phenanthrene and benzene on
- differently structural kerogen: important role of micropore-filling. Environ.

- 881 Pollut. 185, 213-8.
- Zhang, Y.P., Wang, F., Bian, Y.R., Kengara, F.O., Gu, C.G., Zhao, Q.G., Jiang, X.,
- 883 2012. Enhanced desorption of humin-bound phenanthrene by attached
- phenanthrene-degrading bacteria. Bioresour. Technol. 123, 92-97.
- Zhang, Y.P., Wang, F., Zhu, X.S., Zeng, J., Zhao, Q.G., Jiang, X., 2015b. Extracellular
- polymeric substances govern the development of biofilm and mass transfer of
- polycyclic aromatic hydrocarbons for improved biodegradation. Bioresour.
- 888 Technol. 193, 274-280.
- Zhang, Y., Zeng, G.M., Tang, L., Huang, D.L., Jiang, X.Y., Chen, Y.N., 2007. A
- 890 hydroquinone biosensor using modified core shell magnetic nanoparticles
- supported on carbon paste electrode. Biosens. Bioelectron. 22, 2121-2126.
- Zhao, G, Huang, Q.Y., Rong, X.M., Cai, P., Liang, W., Dai, K., 2014a. Interfacial
- interaction between methyl parathion-degrading bacteria and minerals is
- important in biodegradation. Biodegradation. 25, 1-9.
- Zhao, L., Bian, J., Zhang, Y., Zhu, L., Liu, Z., 2014b. Comparison of the sorption
- behaviors and mechanisms of perfluorosulfonates and, perfluorocarboxylic
- acids on three kinds of clay minerals. Chemosphere. 114, 51-58.
- 898 Zhao, Y., Geng, J., Wang, X., Gu, X., Gao, S., 2011. Tetracycline adsorption on
- kaolinite: pH, metal cations and humic acid effects. Ecotoxicology. 20,
- 900 1141-1147.
- 201 Zhao, Y., Gu, X., Li, S., Han, R., Wang, G., 2015. Insights into tetracycline adsorption
- onto kaolinite and montmorillonite: experiments and modeling. Environ. Sci.

903	Pollut. 22, 17031-17040.
904	Zhao, Y., Liu, F., Qin, X., 2017. Adsorption of diclofenac onto goethite: Adsorption
905	kinetics and effects of pH. Chemosphere. 180, 373-378.
906	Zhou, Y.Y., Tang, L., Zeng, G.M., Chen, J., Cai, Y., Zhang, Y., Yang, G.D., Liu, Y.Y.,
907	Zhang, C., Tang, W.W., 2014. Mesoporous carbon nitride based biosensor for
908	highly sensitive and selective analysis of phenol and catechol in compost
909	bioremediation. Biosens. Bioelectron. 61, 519-525.
910	Zhu, B.T., Wu, S., Xia, X.H., Lu, X.X., Zhang, X.T., Xia, N., Liu, T., 2016. Effects of
911	carbonaceous materials on microbial bioavailability of
912	2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in sediments. J. Hazard. Mater.
913	312, 216-223.
914	
	O'O
	CCSIO

Figure captions

Fig. 1. Sorption and transport process of POPs in soil. (A) Sorption of POPs by SOM, influenced by structure (aromaticity and aliphaticity), polarity, spatial arrangement and physical conformation of SOM. (B) Sorption of POPs by soil minerals due to surface reaction and micropore sorption. (C) Transport of POPs in soil, including macropore flow, diffusion mass transfer as well as facilitated mobility.

Fig. 2. Microbial adaptations to increase POPs bioavailability. Microbes adjust to unfavorable conditions by making morphological, physiological and behavioral adaptations.

924 Fig. 3. Various ways of microorganism accessing POPs.

CC6/6/yregy