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• The LBS big data of Heatmap is suitable
for depicting the short-term population
mobility;

• The downtown’ PWE is often
overestimated, while the underrated
PWE is mainly in suburbs, especially on
weekends;

• The urban PWE to high-level PM2.5 is
greatly underestimated during the
morning rush hours on weekdays;

• The commuters may suffer more PM2.5

pollution and uneven environmental re-
source distribution
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Spatio-temporal distributions of air pollution and population are two important factors influencing the patterns
of mortality and diseases. Past studies have quantified the adverse effects of long-term exposure to air pollution.
However, the dynamic changes of air pollution levels and population mobility within a day are rarely taken into
consideration, especially in metropolitan areas. In this study, we use the high-resolution PM2.5 data from the
micro-air monitoring stations, and hourly population mobility simulated by the heatmap based on Location
Based Service (LBS) big data to evaluate the hourly active PM2.5 exposure in a typical Chinesemetropolis. The dy-
namic “active population exposure” is compared spatiotemporally with the static “census population exposure”
based on census data. The results show that over 12 h on both study periods, 45.83% of suburbs' population-
weighted exposure (PWE) is underestimated, while 100% of rural PWE and more than 34.78% of downtown's
PWE are overestimated, with the relative difference reaching from −11 μg/m3 to 7 μg/m3. More notably, the
total PWE of the active population at morning peak hours on weekdays is worse than previously realized,
about 12.41% of people are exposed to PM2.5 over 60 μg/m3, about twice as much as that in census scenario.
The commuters who live in the suburbs and work in downtown may suffer more from PM2.5 exposure and un-
even environmental resource distribution. This study proposes a new approach of calculating population expo-
sure which can also be extended to quantify other environmental issues and related health burdens.
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1. Introduction

Air pollution, especially particulate matter of aerodynamic diameter
≤2.5 μm (PM2.5) has become a major public health concern in recent
years (Cohen et al., 2017; Kampa and Castanas, 2008; Kim et al.,
2015). Many studies have found both acute (Dominici et al., 2006;
Laden et al., 2000; Peters et al., 2001) and chronic (Hoek et al., 2013;
Miller et al., 2007) exposure to high-level PM2.5 can result in premature
deaths associated with various health conditions, such as cardiovascu-
lar, respiratory and reproductive system diseases. It is particularly wor-
rying that PM2.5 pollution is more serious in China (Apte et al., 2015; Lin
et al., 2018). Especially in the high-density metropolitan areas, PM2.5

concentrations can be greater than 200 μg/m3 during heavy hazy days
(Chan and Yao, 2008; Li et al., 2017; Liu et al., 2013). According to
Asian Development Bank, in 2013, less than 1% of 500 biggest cities in
China (with population of more than 100,000) met the standard of
World Health Organization (WHO) Air Quality (annual mean value:
10 μg/m3, 24-hmean value: 25 μg/m3) (Zhang and Crooks, 2012). In ad-
dition, the population mobility with Chinese characteristics such as ex-
cessive commutesmay leadurbanpeople to suffermore PM2.5 exposure
andunfair environmental resource distribution (Day andCervero, 2010;
Lu et al., 2017). Thus, precisely assessing short- and long-term popula-
tion exposure to PM2.5 in Chinese metropolises become crucial for bet-
ter understanding the risk and taking valid interventions.

Over the past years, researchers have investigated several standards
for the evaluation of population exposure risks of PM2.5. They confirm
the big differences of personal exposure in various spatio-temporal sce-
narios (Nethery et al., 2008). Different micro-environments (spatial
heterogeneity of PM2.5) and human activities are major determining
factors of population exposures, thus, both of them should be taken
into account. However, it is difficult to estimate population exposure
to PM2.5 in high resolution of both time and space in the whole metro-
politan area. For depicting map of ground PM2.5 distribution, site-
based observations and satellite-based models are most widely used
to get relatively reliable PM2.5 data. Site-based observations offer the
real-time estimations of PM2.5 concentration levels through continuous
point-based interpolating measurements provided by monitoring sta-
tions (Li et al., 2015; Liu et al., 2015; Xu et al., 2019; Zhang et al.,
2016). But the sparse and uneven distribution of stations cannot fully
capture the spatial variability, which may limit accuracy of the interpo-
lation results. The satellite-basedmodels help improve the spatial preci-
sion of PM2.5 concentrations. Scholars combine values of aerosol optical
depth (AOD) with various models (e.g. global atmospheric chemistry
model (Gariazzo et al., 2020), land use regression model (Nyhan et al.,
2019) and random-forest model (Araki et al., 2018; Stafoggia et al.,
2019)) to map ground PM2.5 concentrations. Nevertheless, the satellite
data is sensitive to weather, and scholars prefer to consider a relatively
big temporal resolution of daily, monthly or yearly of change of PM2.5.

Accurately estimating the dynamic population activity is another
challenging point in the assessment of population exposure. Census
data is easily available and usually applies to country-scale models
over decades as it assumes that the population distribution is uniform
and it is only updated every five or ten years (Fleischer et al., 2014;
Zhao et al., 2018). The raster datasets, such as LandScan Global Popula-
tion (Dobson et al., 2000) andWorldPop (Tatemet al., 2005) show some
spatial heterogeneity of population. However, like census, they also ig-
nore the constant flow of population. Previous studies have shown the
health risks may be underestimated when population mobility is not
considered in the exposure assessment (Setton et al., 2011). To solve
the problem, scholars take the people's location information into
amount. Some use GPS-based mobile air monitors to examine subjects'
real-time location and the air pollution concentration nearby (Hankey
et al., 2019; Lu and Fang, 2015). However, due to the individual differ-
ences, privacy restrictions and spatialmisalignment from the spatial ag-
gregation of mobile measurements, this method is hard to be applied in
awide area. Some studies developmobile signal data to simulate spatial
2

patterns of human activity and to assess the long-term exposure to
PM2.5 (Chen et al., 2018; Nyhan et al., 2016). This method greatly
improves the precision of both time and space, but the source data of
population is hard or costly to obtain. In addition, it should be noted
that the short-term exposure such as hourly exposure to air pollution
gets less attention. Actually, PM2.5 can change dramatically across tem-
poral scales fromminutes to hours in big cities, andmost people cannot
stay still in areas of the same air quality throughout the whole day.
Short-term exposure is a good indicator to assess the impact of PM2.5

on urban people, especially certain groups like commuters.
To quantify the real-time population exposure in metropolises, this

study integrates the air pollution data from densely distributed micro-
air monitoring stations in Changsha City (including the central urban
areas, rural areas and suburbs) and dynamic population distribution in-
formation from LBS big data of the heatmap. Then we compare the
short-term (per hour) exposure of urban people in two population dis-
tribution computing models and pay special attention to the people's
exposure in rush hours. The purpose of our study is to improve the
methods of quantifying short-term assess population exposure to air
pollution in large cities, to locate high exposure areas more accurately,
and to provide a new idea for future research in environmental epide-
miology and urban planning.

2. Materials and methods

2.1. Study area

We investigated the hourly concentrations of PM2.5 in Changsha City
from April 1st to April 28th in 2019 (see the April's hourly PM2.5 data in
Table S2 which shows similar time trend every week), and selected five
typical days (April 19th toApril 23rd), including threeworkingdays and
two rest days. Thenwe assessed the hourly (7:00 am to 11:00 pm) PWE
to PM2.5 during the five days. Changsha is a typical Chinese metropolis
with characteristics of high density and centralized urban function.
Xiang River divides this city into two parts, the east is downtown
while the west is mainly suburbs and scenic spots. The special city con-
figuration and structure lead to vast populationwho live in thewest and
work in the east commuting across the city every day. The study area
(see Fig. S1) is Changsha main city which occupies 1837 km2, including
73 street-level communities (including 46 central regions, 24 suburban
regions and 3 rural regions, mainly divided by Changsha belt high way)
with 3.27 million of residents.

2.2. Fine particulate matter data

The PM2.5 concentration data was obtained from themicro-air mon-
itoring stations. By the end of 2018, 162 micro-air monitoring stations
were set up by government in Changsha, including 122 in the main
urban areas (as shown in Fig. 1), at least one or two in each street-
level community which is the smallest administrative unit consistent
with the census unit (the distance between the stations is about
500 m in downtown areas, and 2 km in the suburbs). This plan makes
up for the lack of the number of state controlling air sampling sites
and aims to provide Changsha City with accurate monitoring data, so
when the air pollution rising over an acceptable level, the managers
can quickly determine the location and conduct inspections in time.
The micro-air monitoring stations adopt the particle sensor with laser
scattering to monitor normal pollutants of PM2.5 and PM10. Like the
state controlling air sampling sites' data, the monitoring data of micro-
air monitoring stations is also regulated by Ecology and Environment
Department of Hunan to meet the same national standards. The air pol-
lutant data is uploaded every hour through the network and can be seen
on the environmental quality monitoring platform in real time. The
original air pollution datawe got from themicro-airmonitoring stations
is in high spatio-temporal precision. (See detailed description of the ac-
curacy of air pollution data in Method S1).



Fig. 1. Locations of micro-air monitoring stations in Changsha main city.
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The PM2.5 spatial distribution map was realized by the Cokriging
spatial interpolation method, which used PM10 data as auxiliary infor-
mation. The Cokriging is based on Kriging spatial interpolation with
higher accuracy and has been effectively used to map the spatial distri-
bution pattern of air pollution (Carnevale et al., 2011; Singh et al., 2011;
Wu et al., 2006). The PM2.5 and PM10 measured values from April 19th
to April 23rd were processed by Cokriging interpolation to generate
grid-layer graphs with a resolution of 100 m × 100 m. Then we took
the average of all pixels in each street community per hour, and finally
got thehourly street-level PM2.5 concentrations separately onweekdays
and weekends.

2.3. Quantifying dynamic population distribution based on heatmap

Geographic and time-referenced heatmap data was used to quantify
the hourly number of populations in each district throughout the study
period. Heatmap is a big-data visual product launched by Baidu (one of
the largest Internet firms in China), when the smartphone users access
Baidu products (such as search, map, weather, music, etc.), the clusters
location information is uploaded to the platform. As Baidu heatmap is
based on LBS platform, we define the data as LBS big data of
the heatmap in the research. According the official introduction of the
heatmap, the accuracy of positioning of Baidu App is about 1–3 m. The
“Heat Index” is obtained by counting the speed and density of people,
with different color and brightness reflecting the spatial difference of
population size. The data is updated about every 15min. As a new appli-
cation based on hundreds of millions user's location information, LBS
big data of the heatmap can cover enough of the smart phone users
(see detailed description of the accuracy of LBS data in Method S2). Ac-
cording to “The 44th China Statistical Report on Internet Development”
(China Internet Network Information Center, 2019) published by
China Internet Network Information Center, up to June 2019, there
were 854 million Internet users and 847 million mobile phone users
in China. Among the mobile users, urban population accounted for
73.71%. With a big sample size and full-covered population composi-
tion, the population calculated by LBS big data of the heatmap can
meet the demand of this research.

The difference of human activity in cities mainly reflects on the reg-
ular activities such as commute and free movement like leisure. Thus,
we selected the heatmaps updated every hour from 7 am to 11 pm in
five days from April 19th to April 23rd, then averaged and classified
the data into weekday group and weekend group, finally got 34 pieces
of heatmaps. The study made coordinate conversion parameters
through Baidu API application programming interface, and transferred
the images in the database to the geographic coordinate system of this
article under the ArcGIS Pro platform. There were four terminals of the
heatmap images, normally the fourth terminal was extracted, as this
Alpha terminal can expressed the information of maps by 256 levels of
gray, easy for reclassify and reassignment (Tai, 2019; Wang, 2018; Wu
and Ye, 2016). Finally, the population distribution data was quantified
by identifying the pixel level and scale in each administrative region.

2.3.1. Statistics of active population
The total active population of a region was the sum of each pixel's

population in the region, which was characterized by the sum of the
product of thepixel size and its people density. Specifically, the equation
is listed as follows:

Pik ¼ δ� dik ð1Þ

Pn ¼ ∑h
i¼1Pik � jk ð2Þ

where n represents different street-level communities (regions); i rep-
resents the serial number of spatial unit (pixel unit); k represents the
color number of heatmap; Pik is the active population of the k-th color
value at spatial unit i; δ is the area of a pixel unit in the region (the area
4

of the pixel in this study is 100 square meters); dik is the active popula-
tion density of the k-th color value at spatial unit i. The estimation of
population density refers to the Baidu official legend; the color value
and brightness jointly represent the population density (Leng et al.,
2015; Tan et al., 2016). Pn is the total active population in the region
n; h is the total number of color value categories; and jk represents
the number of pixels of the k-th color value in n-th region.

As users have the dynamic characteristics of constantly “online” and
“offline”, the total number of active populations at different moments
may fluctuate. In order to avoid interference from changing sample
size due to the different habit of using mobile phone, the distribution
of active population was expressed by proportion of active population
as follows:

PPmi ¼
Pmi

Pmn
ð3Þ

PPmn ¼ Pmn

∑nPmn
ð4Þ

where m represents different times, PPmi represents the proportion of
the population at spatial unit i at time m, Pmi represents the number
of active population at spatial unit i at time m, Pmn is the number of ac-
tive population in the n-th region at timem, and PPmn is the proportion
of the active population in the n-th region to the total active population
in all regions at time m.

2.4. Census population

The Changsha City demographic data in 2019 was obtained from
WorldPop Country Datasets (Hay et al., 2005; Tatem et al., 2005, 2004;
Tatem and Hay, 2004) (https://www.worldpop.org/). As described in
the Introduction part, population and housing census is still themost im-
portant resource for producing accurate population data at national and
subnational scales. WorldPop top-down modelling methods take a
global database of administrative unit-based census and projection
counts for each year of nearly 20 years and adopt a set of detailed
geospatial datasets to break them into grid cell-based counts. WorldPop
has developed peer-reviewed spatial statistical methods, using Random
Forests machine learningmethods to transform and disaggregate popu-
lation counts at administrative unit levels to 100 × 100 m grid, utilizing
relationships with spatial covariate layers from satellites and other
sources (Reed et al., 2018; Stevens et al., 2020, 2015). We adopt a grid
map of the WorldPop population distribution of Changsha City in 2019.
The total urban population of Changsha City according to WorldPop fig-
ures was 3.27 million in 2019. After a summary calculation, the percent-
age of population in each street-level administrative unit of the total
urban population was obtained as the “census population” in this paper.

2.5. Population-weighted exposure to PM2.5

We adopted PWE assessmentwhich can take the spatial distribution
of population into account as well as compare the exposure risk of dif-
ferent regions (Gui et al., 2019; Li et al., 2019). For accurately
superimposing different types of layers in following steps, the study
used a unifying temporary and spatial resolution of the PM2.5 concentra-
tion distribution and heatmap data, as 1 h and a grid of 100m × 100 m,
respectively. This pixel-based method for assessing PWE can efficiently
avoid the potential zoning effect of the modifiable area unit problem
(MAUP) (Chan et al., 2012; Ho et al., 2015). The Eq. (5) below was
used to estimate PWE to PM2.5 in different regions of Changsha City
for later comparison.

Emn ¼ ∑j
i¼1 Pmi � PMmið Þ

Pmn
ð5Þ

https://www.worldpop.org/
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where Emn is the PWE to PM2.5 in the n-th region of Changsha City at
time m, Pmi represents the number of active population at spatial unit
i at time m, Pmn is the number of active population in the n-th region
at time m, PMmi is the PM2.5 concentration at spatial unit i at time m,
and j is the total number of units in region n.

3. Results

3.1. Spatio-temporal variation of PM2.5 and population mobility

3.1.1. Spatio-temporal patterns of PM2.5 in Changsha
Fig. 2 illustrates the hourly PM2.5 concentrations in Changsha during

the study periods (the PM2.5 data in 5 days was averaged and classified
into weekday group and weekend group). In general, the PM2.5 pollu-
tion is more serious and shows a more obvious spatial heterogeneity
on weekends, which may be because of the large numbers of construc-
tion projects in Changsha, and the busy nights' andweekends' operation
on building sites. Specifically, the average concentration onweekends is
higher than that on weekdays by 15.03%, and the difference between
the highest and the lowest values exceed over 60 μg/m3 on weekends,
which is twice the difference on workdays. The temporal trend of
PM2.5 concentration on both days is similar, but the spatial pattern
varies greatly. For example, the peak appears on morning rush hours,
withmean values of 53 μg/m3 onweekdays and 66 μg/m3 onweekends,
respectively. Then the PM2.5 concentrations decrease slowly to the low
of 40 μg/m3 on weekdays and 50 μg/m3 on weekends in evening rush
hours and rises again at night on both days. However, in terms of the
spatial distribution, the hot spots are concentrated in the west of
Fig. 2. Scatter-box plots of hourly PM2.5 concentration levels in Changshamain city during the s
weekend group, and each point represents PM2.5 concentration in corresponding region).

5

Changsha City (newdevelopment zones) onweekdays.While onweek-
ends, areas of high PM2.5 concentration expand to downtown, western
industrial and eastern airport regions. (Detailed distribution map of
PM2.5 concentration during different periods are shown in Fig. S2.)

3.1.2. Trend of population mobility based on LBS big data of the heatmap
Fig. 3a and b shows the average proportion of active population in

different regions calculated by heatmap in Changsha City at 10 am
(working time) and 10 pm (rest time) on weekdays, collectively re-
ferred to as the “active population” in the study. Fig. 3c is the relative dif-
ference between the proportion of active population at upper two time
points, expressing the trend of population mobility. Overall, the crowds
are spreading from the city center to the suburbs from daytime to night.
Among them, Zuojiatang Street (District 53 in downtown) has the
largest number of people leaving at night, losing 1.1% of population.
While Xingsha Street (District 61 in suburb) is the area with the most
people streaming into at night, a 1.9% increase over morning. These
findings are consistent with the actual condition. Fig. 3d displays the
proportion of census population, in relative terms, is evenly distributed,
which shows a significant difference in comparisonwith the proportion
of the active population.

3.2. Relative differences between dynamic and static exposure

3.2.1. Hourly spatio-temporal patterns of active PWE and census PWE
In the study, hourly PWE of all regions in the main urban area of

Changsha is calculated in the scenario of “active population” and
“census population”. We choose 8:00, 10:00, 18:00, and 22:00 as typical
tudy periods (the PM2.5 data in 5 dayswas averaged and classified intoweekday group and
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Fig. 4. (a)–(d)Mapof hourly PWE to PM2.5 (μg/m3) per district for the active population scenario onweekdays, (e)–(h) for the census population scenario onweekdays. (i)–(l) The relative
difference (μg/m3) between these two scenarios on weekdays. (Blue indicates PWE of the region is overestimated, while red indicates the PWE is underestimatEd.) (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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times from 17 time points on both weekdays and weekends. Figs. 4 and
S3 describe the changes in PWE to PM2.5 during the eight time periods
selected. The overall temporal trend of the population-weighted PM2.5

exposure generated in the two scenarios is consistent with the actual
PM2.5 concentration, all reaching the highest peak in morning rush
hours, falling slowly during the day, and increasing slightly again at
night.

There are some differences of actual spatial PWE distribution in the
two scenarios, with certain rules. As can be seen in Fig. 4a–h, areas of
high exposure value are dispersedly distributed among suburban cen-
tral areas in west and central business areas on weekdays. While on
weekends, the high-value areas aremore concentrated in the city center
and transport hub zones in east. Among them, the hot spots such as No.
1Wenyi Road Street, No. 8Wulipai Street, No. 12XianghuStreet andNo.
Fig. 3. Different population proportion (PP) of each region in Changsha main city. (a) Work-tim
heatmap. (c) The relative difference between (a) and (b). (d) Census PP according to WorldPo

7

9 Huoxing Street which are all typical downtown areas ranked steadily
within top 5 in all 17 h monitored throughout the two days. The distri-
bution of hot spots are similar with the previous research, indicating
that the downtown exposure to PM2.5 is very serious (Lee et al., 2017;
Li et al., 2013; Rijnders et al., 2001; Xu et al., 2019; Zhang et al., 2016).
The Table S1 records the areas of top 5 highest PM2.5 exposure in detail.

3.2.2. Comparison of hourly active PWE and census PWE
The relative difference is calculated to compare the dynamic expo-

sure with the static exposure. We define the exposure is
underestimated or overestimated of the regions where the active PWE
is higher or lower than the census PWE. From Figs. 4i–l, S3i–l, we can
see the suburbs' PWE is largely underestimated especially onweekends,
while the overestimated PWE ismainly in rural areas and city centers. In
e (10 am) Active PP according to heatmap. (b) Rest-time (10 pm) Active PP according to
p.
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addition,we define the highly underestimated or overestimated PWE of
the regions where the absolute value of the hourly difference between
the active PWE and census PWE is greater than 2. Among them, the ex-
posure at No. 68 Ansha Town (rural area) is overrated much, with the
difference lower than −5 μg/m3 during all time. On weekdays, most
highly underestimated PWE is concentrated in suburban transportation
hub like District 67 and industrial hub like District 73, with the daily av-
erage difference of 2 μg/m3, 1 μg/m3, respectively. While on weekends,
in addition to the above two regions, the highly underestimated PWE
appear in scenic areas such as District 26 and mixed-use zones such as
District 52,with the daily average difference of 2 μg/m3, 3 μg/m3, respec-
tively. Specific differences of PWE between two scenarios in individual
regions are shown in Figs. S4–S5.

It is interesting that comparing exposure results in the same area can
be opposite during morning and night, weekdays andweekends. For in-
stance, in Orange island (No.26), the difference value atweekdaynight is
lower than−2 μg/m3 (largely overestimated), then it can come to more
than 3 μg/m3 (largely underestimated) onweekends. Opposite cases are
in the airport zone (No.67), the difference is more than 2 μg/m3 (largely
underestimated) on weekdays while that is lower than −3 μg/m3

(largely overestimated) at weekend night. The distributions of
opposite-value regions change with the moving crowd at different
times. Normally the exposure is more underestimated in people gather-
ing areas.

3.2.3. Relative difference in PWE throughout the day
Fig. 5 shows the difference of PM2.5 exposure in two scenarios in

various regions of Changsha City throughout the day. It can be clearly
observed that on both weekdays and weekends, the exposure in the
sub-urban central area is underestimated a lot, while the exposure in
the traditional city center (the eastern district) is often overestimated,
Fig. 5. The relative difference (μg/m3) of PWE to PM2.5 (μg/m3) between active population scena
PWE is greater than census PWE in no less than 12 from 17 h, while the opposite is blue. (a)
proportions of the population using two computing methods. (For interpretation of the referen
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especially on weekends. If the active PWE of the district is higher than
census PWE for more than 12 h (from 7:00 to 23:00), we define the dis-
trict is mainly underestimated. And if the active PWE of the district is
lower than census PWE formore than 12 h (from 7:00 to 23:00), we de-
fine the district is mainly overestimated.

In no less than 12 time points on both study periods, 45.83% of sub-
urbs' population-weighted exposure (PWE) is underestimated, while
100% of rural PWE and more than 34.78% of downtown's PWE is
overestimated. In terms of the spatial distribution, the areas with
more underestimated PWE are mainly concentrated in the transporta-
tion hubs (for example, Huanghua Airport in District 67, South Railway
Station in District 60), and suburban industrial districts (like District 73
and its surrounding regions) on weekdays. On weekends, the PWE in
the western inner city turns to be underestimated which is
overestimated on weekdays.

3.2.4. Relative difference in PWE during different time periods
It is worth noting that distribution of areas with underestimated ex-

posure onweekdays change significantly in each timeperiod.Wedefine
the rush hours as 7:00–9:00, 17:00–19:00, a total of 6 time points on
weekdays, and 8:00–9:00, 17:00–20:00, also 6 time points on week-
ends. The daytime is 10:00–11:00, 14:00–16:00, a total of 5 time points
on weekdays, while 7 time points of 10:00–16:00 on weekends. The
night rest is 21:00–23:00, 3 time points on both two days. The positive
values (activity> census, underestimated) and negative values (activity
< census, overestimated) which are determined in no less than 4 time
points at peak time, no less than 4 time points during daytime onweek-
days, no less than 5 time points during daytime onweekends, equal to 3
time points during the night rest periods are extracted, as shown in
Fig. 6. The upper small diagram frames express the difference between
the proportion of the population in the two scenarios.
rio and census population scenario throughout the day, the red zone represents that active
Is on weekday, (b) is on weekend. (Top-left of each frame) The difference between the
ces to color in this figure legend, the reader is referred to the web version of this article.)



Fig. 6. The relative difference of PWE to PM2.5 (μg/m3) between active population scenario and census population scenario during different time periods. (a) (d) The difference in rush
hours. (b) (e) The difference in day time. (c) (f) The difference in night-rest time. Top-left of each frame is the difference between the proportion of the population in two scenarios.
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Specifically, on weekdays the underestimated areas are concen-
trated in the western and southern sub-urban areas in rush hours,
with relatively high population proportion. Then the range is extended
with the number of positive value regions increasing from 14 to 20 in
the daytime, with the additions mainly distributed in downtown and
the airport zones. At night the number of regionswith positive value de-
creases from 20 to 16, and the regions are mostly concentrated in the
eastern central city. It is interesting that the changes of the
underestimated areas match up with the commuting trends. During
weekends, the number of underestimated regions obviously grows, ex-
ceeding 30 on average. Compared to weekdays, the underestimated
areas expand to western areas where most scenic spots are located,
which is in accord with local people's movement on weekends during
spring.

3.3. Relative difference in PWE in different regions

The results once again indicate the suburban exposure to PM2.5 is
more serious than expected; however, the downtown situation is less
serious than previously thought.We select four representative locations
fromall 73 street-level communities, namelyDistrict 15 Pozi Street (tra-
ditional business district), District 37 Hanpu Town (sub-urban area),
District 40 Dongfeng Road (city center of working and living function),
District 60 Lituo Town (South Railway Station as the transport hub).
Fig. 7 depicts the exposure of population active and census population
9

from 7:00 to 23:00 on weekdays and weekends in these four locations.
There is notmuchdifference of the PWE in the two scenarios in the 15th
district in the two days. While the active population exposure is greater
in the 37th and 60th region (both are sub-urban areas) in the two days.
In 40th Dongfeng Road, the exposure is less differentiating during
weekdays and is overestimated more than 2 μg/m3 throughout the
weekends.

3.4. The total hourly PWE in Changsha City

To better present the hourly variation in PM2.5 exposure, we aggre-
gated the pixel-based assessments to obtain the hourly cumulative per-
centage of PM2.5 exposure in the whole Changsha City. Fig. 8 illustrates
the cumulative percentage of population and air pollution exposure de-
termined for the two-calculation scenario. In both scenarios, almost
100% of the population in prime Changsha is exposed to PM2.5 far ex-
ceeding theWHO limit of 25 μg/m3. The PM2.5 pollution is more serious
on morning rush hours when half the urban population is exposed to
more than 50 μg/m3 and 70 μg/m3 on weekdays and weekends, respec-
tively. It is worth noting that the exposure to high-level PM2.5 is greatly
underestimated during the morning rush hours on weekdays. About
12.41% of urban people are exposed to PM2.5 over 60 μg/m3 in active
scenario; meanwhile, the corresponding rate is only 5.92% for census
population, leading to worse situation of PM2.5 exposure for the com-
muters. In addition to the burden of long-distance commutes, they



Fig. 7. PWE of active population and census population from 7:00 to 23:00 on weekdays and weekends in four typical locations.
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have to run the risk of more health issues relative to air pollution. At
other times, most of the active population's exposure is slightly
lower.

4. Discussion

We take advantage of heatmap's characteristics of real time, large
and diverse user base to build a dynamic population sample database
which represents millions of people in Changsha City. The LBS big data
of heatmap are used to define the changing distribution of the active
population relative to the static rasterized census population. Then we
analyze and compare the two types of PWE in 73 different street-level
communities of Changsha City during different periods. In terms of
10
spatial distribution of PWE, it is clearly observed that areas of high expo-
sure value are mainly concentrated in traditional downtowns as people
spend more time on work and leisure in these busy areas. However,
through the comparative analysis, the downtown's PWE is often
overestimated, while the underrated PWE is mainly in suburbs, espe-
cially on weekends. More notably, highly underestimated areas are
also mainly concentrated in suburbs such as transportation hubs and
new development zones. As for temporal distribution, it is interesting
that comparing exposure results in the same area can be opposite dur-
ing morning and night, weekdays and weekends, in accord with local
people's movement. In addition, the exposure to high-level PM2.5 is
greatly underestimated during the morning rush hours on weekdays.
About 12.41% of urban people are exposed to PM2.5 over 60 μg/m3,



Fig. 8. Cumulative percentage of population and PM2.5 exposure determined in two computing scenarios for each hour of weekdays and weekends.
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about twice as much as that in census scenario, leading to worse situa-
tion of PM2.5 exposure for the commuters.

Regarding the issue above, more attention should be paid to suburbs
in Chinese metropolis with high-level PM2.5 pollution, where the active
crowds aremassing no less than in city centers, andwe can see the clear
trendof outflowof urban people during rest periods andweekends. This
phenomenon of short-term population mobility is a result of Chinese
suburbanization process. Suburbanization in China began in the 1980s
and has spread rapidly in large and medium-sized cities (Feng et al.,
2009; Shen andWu, 2013; Zhou and Ma, 2000). Most of China's subur-
ban residents are purchasers of suburban commercial housing with far
lower prices than that in the central city. These people mostly work in
11
the city center and live in the suburbs, suffering from the long com-
mutes and inequality in environmental resources (Day and Cervero,
2010; Hu et al., 2018; Li and Siu, 2010), such as the serious effects of ex-
posure to PM2.5 (Zhao, 2010). These unfair environmental resource dis-
tributions are attributable to unbalanced regional development which
can also cause the spatio-temporal variability of air pollution. The
results of the study can be applied to other regions of the world. Unlike
the western developed countries, the developing countries such as
Brazil and Colombia and some Asian developed countries like Japan
have a fast suburbanization accompanied with rapidly expanding
urbanization. Especially in the developing countries, people living in
the cities of these countries usually experience a long commute by
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taking public transit (Moovit, 2020), and are exposed to bad air during
daily trips. Accurately estimating these commuters' exposure to air pol-
lution especially in open environment, e.g., the walking route before
and after taking public transit or driving is particularly important. We
will narrow the research and focus on these target population in the fur-
ther study.

By using varying spatiotemporal population metrics, studies can
help to pinpoint the changing hotspots of high air pollution exposure.
For example, as in this study, thedifferent regionswith bad air condition
for commuters on weekdays in Changsha are found. Managers can take
measures to improve the commuting environment according to actual
situation.What ismore, the application ofmicro-airmonitoring stations
and LBS big data is particularly suitable for dealing with short-term air
pollution emergencies. They can accurately assess the dynamic popula-
tion exposure in real time and help observers to find the locationwhere
the population exposure exceeds the limit in time. Therefore, the rela-
tive institutions can take steps quickly to avert an even worse situation.

The results of this study can be applied to optimize resource alloca-
tion, adjust the orientation of urban planning, therebymaximizing pub-
lic health and related social and economic benefits. In the past,
resources are too much inclined to traditional urban centers, ignoring
suburbs. This research provides accurate and high-resolution data of
population exposure to air pollution to help citymanagersmake adjust-
ments in urban planning and set down interventions to air pollution
(e.g., setup of infrastructures, promote multi-functional complex of
urban land use and balance the job-residence relation of the city). For
instance, the infrastructures like monitoring stations can be established
in areas with high population-weighted exposure to air pollutions, not
only in downtown, but also the suburban regions. There is evidence
that the correct adjustment of urban planning and appropriate inter-
ventions to air pollution can help reduce urban air pollution and im-
prove people's health, such as lowering the morbidity of
cardiovascular and respiratory diseases and the rate of premature
deaths (Henschel et al., 2012; Pascal et al., 2013; Xu et al., 2020). In ad-
dition, air pollution is found to exert a significant impact on both public
and national healthcare expenditure, aswell as to drive the inequality in
health care expenditure (Alimi et al., 2020; Liang et al., 2020; Sheng and
Zhang, 2019; Yang and Zhang, 2018). Proper allocation of public spend-
ing also helps to cut down this part of expenditure.

There are some limitations in using the data of population mobility,
however. First, LBS data is normally considered as non-representative
data (Kwan, 2016; Song et al., 2019), the heatmap data used in the re-
search actually represents the relative distribution of active users, not
the true population density. The characteristics of big data of this type
may not be fully sampled in some groups of population, such as children
and the elderly. Nevertheless, the proportion of these groups of people
using mobile networks is increasing significantly (China Internet Net-
work Information Center, 2019), the sampling data bias of the minority
groups will not weaken much the performance of LBS big data in char-
acterizing distribution of dynamic population. Whereas, there are still
some uncertainties when using such datasets, and these conclusions
need to be treated with caution. Field surveys and interview question-
naires can be added for further verification in follow-up studies. Second,
because the floating population between cities in a short period of time
will not greatly affect the total population in the city, this study ignores
the cross-city population flow and migration outside the urban area.
Third, due to privacy and security concerns, LBS data cannot track indi-
vidual path which makes it hard for us to distinguish the levels of pop-
ulation exposure to air pollution affected by different transportation
options or commutingmodes. This research focuses on the total amount
of the large sample population; we can study the exposure of different
groups of population by adding data of individuals in the future studies.
Fourth, due to the limitations of Baidu heatmap API service, we can only
get five days' data per city at most. Actually, each piece of heatmap has
hundreds of thousands of data of a large sample size of population and
the urban people's movements have regular daily and weekly patterns
12
at urban scale. And thenwe analyzed theApril's hourly PM2.5 concentra-
tions and found the laws that the PM2.5 pollution was mainly worse at
night and during the weekends in that April. Next, we may study
people's exposure to air pollution in a larger range of time and space
by applying for long-term and different cities' heatmap data.

This study proposes a new approach of calculating population expo-
sure.We utilize two dynamic variables, namelymicro-monitoring PM2.5

data and heatmap population information to quantify the PM2.5 expo-
sure of active flow of millions of people in a highly urbanized metropo-
lis. This study can offer a new idea to the field of environmental
exposure science and environmental epidemiology and build a dataset
for future research by combining the air quality with human health,
which can also be extended to quantify other environmental issues
and related health burdens. The findings of this study will help re-
searchers and policy makers better understand the spatial pattern of
air pollution and the impact of pollution exposure, thereby take effec-
tive measures to control pollution.
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