Separation and Purification Technology 250 (2020) 117237

Contents lists available at ScienceDirect

Separation

Separation and Purification Technology Eeugteation

2 Technology

journal homepage: www.elsevier.com/locate/seppur

Peroxymonosulfate activation of magnetic Co nanoparticles relative to an N- | f)
doped porous carbon under confinement: Boosting stability and S
performance

a,b,: a,b a,b
)

Jiao Cao™”, Zhaohui Yang™"*, Weiping Xiong™”", Yaoyu Zhou®, You Wu
Saiwu Sun™", Chengyun Zhou™", Yanru Zhang™", Renhua Zhong"

, Meiying Jia

2 College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China

® Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
€ College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China

4 Hunan Yaoheng Environmental Technology Co Ltd, Changsha 410200, PR China

ARTICLE INFO ABSTRACT

The integration of metal nanoparticles into carbon materials has catch considerable attention. In this study, we
have successfully fabricated the N-doped porous carbon encapsulated magnetic Co nanoparticles (Co@NC-800)
through a two-step pyrosis of zeolitic imidazolate frameworks (ZIF-67). The obtained Co@NC-800 exhibited
excellent stability in activating peroxymonosulfate (PMS) towards tetracycline (TC) degradation without ob-
vious Co leaching and magnetically separable. The removal efficiency reached up to 90.1% within 3 min and
74.7% of total organic carbon (TOC) removal efficiency could be obtained in 30 min towards TC by Co@NC-
800/PMS system. Mechanism explorations revealed the encapsulated Co nanoparticles in the porous N-doped
carbon promoted the catalytic activity and stability. The two-pathway mechanism study indicated that radical
and non-radical oxidations acted together in TC degradation. Moreover, some potential factors, including PMS
dosage, TC concentration, solution pH value, anion/organic matters and temperature were investigated. The
Co@NC-800/PMS system exhibited high efficiency in removal of various antibiotics (oxytetracycline, chlorte-
tracycline and deoxytetracycline). Even in actual water bodies (tap water, river water and pharmaceutical
wastewater), the Co@NC-800/PMS system displayed excellent performance. This study proposed a design of
metal nanoparticles under confinement for fabricating highly active catalysts towards PMS activation.
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energy (7.4 = 2.4 kcal mol 1), the self-decompose of PMS can occur
and produce '0, [13,15]. 10, induced oxidation reaction possess a

1. Introduction

In recent decades, high production and consumption of pharma-
ceutical and personal care products (PPCPs) are bringing threats to the
aquatic environment and human health [1-6]. Advanced oxidation
processes (AOPs) referring to the production of reactive oxygen species
(ROS) showed the superiority for organics removal due to its high mi-
neralization and easy operation [7-12]. Peroxymonosulfate (PMS) is a
typical oxidant that various methods like irradiation, heating, ultra-
sound and transition metal catalysis can be applied to activate PMS to
generate ROS for wastewater remediation [13]. Previous researches are
generally focused on the generation of radicals like sulfate radical
(SO4 7)), hydroxyl radical (‘OH radical) and superoxide radical
(05" 7), while ignoring non-radical like singlet oxygen (*0y) [14]. Due
to the high reaction rate (=2 x 108 m~' S™!) and low activation

relatively high catalytic performance and suffer less interference from
water bodies compared to SO,” ~, 'OH and O," ~ radicals [16].

The AOPs of metal nanoparticles under confinement has generated
new insights in the field of environmental remediation. The confine-
ment strategy of carbon-encapsulated materials exhibited significant
advantages in catalytic reactions due to their unique heterostructures
and electronic configuration [17]. For example, Pan’s group reported
the Fenton reaction by Fe,O; confined in carbon nanotube
(Fe,03@CNT-H) catalyst and found that the catalyst using nanocon-
finement for organics removal exhibited extremely high activity and pH
suitability [18]. The high activity and enhanced stability of catalysts
can be achieved via confined strategy [19]. Liu et al. [20] fabricated N-
doped graphitic carbon nanotubes encapsulated FeCo nanoparticles and
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found that the existence of strong synergetic coupling promoted the
catalytic activity. Lei’s group found that Co confined in graphitic-N-
doped nanotube was more active than Co confined in pyridinic-N-doped
nanotube [21]. Therefore, the metal-support interaction played essen-
tial role in the catalytic performance [22,23].

Metal-organic frameworks (MOFs) possess three-dimensional and
well-ordered structure, enabling it an ideal platform for the fabrication
of metal NPs confined in porous carbon by pyrolysis method [24].
During the pyrolysis process in inert gases, the organic linkers in MOFs
were transformed into carbon framework and the metal NPs gradually
formed. The metal NPs could induce the graphitization of carbon and be
confined within the graphite carbon [25]. Chen et al. [26] employed
Prussian blue analogue (Cos[Fe(CN)gl.) for fabricating a magnetic
carbon/cobalt/iron composite via a one-step pyrolysis method. The
obtained magnetic carbon/cobalt/iron composite composed of uni-
formly-distributed cobalt and cobalt ferrite confined in a porous carbon
substrate and exhibited activity for activating peroxymonosulfate
(PMS) to degrade Rhodamine B (RhB). Researches indicated the pre-
sence of N species within the carbon would remarkably increase the
density of states near the Fermi level and accelerate the electron be-
tween the inner metal and outer carbon shell, which made for the
catalytic reaction [27]. Song et al. [28] fabricated Fe/Fe;C@N-doped
porous carbon by pyrolyzing of Fe-MIL-88B-NH, and estimated the
catalytic performance by activating PMS to degrade 4-chlorophenol (4-
CP) from aqueous solution. The efficient electron transfer between Fe
NPs and the N heteroatom conduced to the high performance.

As a subclass of MOFs, zeolitic imidazolate frameworks (ZIFs) with
abundant and ordered N species would be an ideal precursor to syn-
thesize metal nanoparticles confined in N-doped carbon [29]. The
combination of ZIFs-based confinement strategy and AOPs is probably a
potential strategy to remove the organic contaminant with high effi-
ciency. Co-based ZIFs (ZIF-67) with rhombic dodecahedron mor-
phology have been widely studied to synthesis metal and N co-doped
carbon materials (M-N-C) for its abundant Co and N species [30,31].
The obtained M-N-C inherited the porous property of pristine ZIF-67
and the M-N-C bond can bring out active sites for catalytic reaction.
Furthermore, Co-based catalyst usually shows magnetism, which can be
magnetically separated after catalytic runs.

With these things in mind, ZIF-67 was selected as self-sacrificial
template and pyrolyzed at two stages under nitrogen atmosphere to
obtain N-doped porous carbon encapsulated Co nanoparticles (Co@NC-
800). Two-step pyrolysis method can maximize the maintenance of the
porous structure of the pristine ZIF-67 in contrast to the direct pyrolysis
process. As a kind of typical, tetracycline (TC) was chosen as the target
contaminant. The obtained Co@NC-800 exhibited high catalytic ac-
tivity in TC degradation via the activation of PMS. The morphology,
crystalline phase, composition, pore structure and electrochemical
property of catalysts were characterized. Moreover, the catalytic me-
chanism based on electrochemical characterizations, X-ray photoelec-
tron spectroscopy (XPS) analysis, tripping experiments and Electron
Paramagnetic Resonance (EPR) results were proposed. In addition, the
Co leaching and recycling experiments were taken into account to
evaluate the stability of catalyst. Multiple antibiotics (oxytetracycline,
chlortetracycline and deoxytetracycline) and various water bodies (tap
water, river water and pharmaceutical wastewater) were applied to
estimate the practical application potential of Co@NC-800 catalyst.
This study presented the superiority of fabricating catalyst under con-
finement and provided a versatile method to design catalyst with high
efficiency in wastewater remediation.

2. Materials and method
2.1. Materials preparation

Synthesis of ZIF-67: Co(NO3)»6H,O (5 mmol, 1.4551 g) and 2-
methylimidazole (20 mmol, 1.642 g) were dissolved in 50 mL of
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methanol, respectively. Then, the 2-methylimidazole solution was
slowly added into Co(NO3),6H>O solution and continuously stirred for
20 h at room temperature. The obtained purple products were collected
and centrifugal washed by methanol for three times. Finally, the ZIF-67
powder was harvested after vacuum dried at 60 °C overnight.

Synthesis of Co@NC-800: A certain amount of ZIF-67 was placed
into a quartz boat and put into the middle of the quartz tube. After
nitrogen was inlet for 1 h, the furnace was heated was heated from
room temperature to 300 °C for 1 h with a heating rate of 5 °C/min.
Afterward, the furnace was then heated into 800 °C with a heating rate
of 5 °C/min and kept for 2 h. The sample was naturally cooled down to
room temperature. The resultant products were washed with deionized
water and magnetic collected and then vacuum dried at 60 °C over-
night.

Synthesis of NC-800: The obtained Co@NC-800 was immersed in HF
(20% vol) solution for 24 h to remove the Co nanoparticles. Finally, the
black powders were collected and centrifugal washed by deionized
water for three times and vacuum dried overnight.

2.2. Experiments method

The degradation experiments were conducted in 250 mL beakers
containing 100 mL of 30 mg L.~! TC solution. 20 mg of samples were
added into TC solution with continuously magnetic stirring for 60 min
to reach adsorption equilibrium. The TC concentration after adsorption
equilibrium was applied as the zero point. Then, 20 mg of PMS were
added and stirred for 30 min. Samples were collected and measured
after a regular time interval. If not specified, the pH value of TC solu-
tion used in the experiment was unadjusted.

3. Results and discussion
3.1. Structure characterization

The preparation process of the Co@NC-800 was illustrated in
Fig. la. As Fig. la and b displayed, the ZIF-67 crystal presented a
uniform rhombic dodecahedral morphology with an average size of
600 nm. Moreover, X-ray powder diffraction (XRD) patterns (Fig. 2a) of
the as-synthesized ZIF-67 fitted well with the simulated data of ZIF-67,
representing the ZIF-67 crystals were successful synthesized [32-34].
The obtained Co@NC-800 inherited rhombic dodecahedron mor-
phology and the particle size was almost unchanged, while the surface
of Co@NC-800 was much rougher (Fig. 1d and e). The XRD patterns of
Co@NC-800 (Fig. 2b) exhibited three sharp peaks belonged to metallic
Co (PDF#15-0806) at 260 = 44.216 (1 1 1), 51.522 (2 0 0) and 75.853
(2 2 0), demonstrating the presence of Co nanoparticles [35]. During
the pyrolysis process, the organic linkers of ZIF-67 were transformed
into an N-doped carbon skeleton and the surface of ZIF-67 started to
shrink. Subsequently, the Co nanoparticles gradually formed [25]. After
the pyrolysis process, the magnetic powder (Co@NC-800) was washed
thoroughly with HF solution (20% vol) to remove the existing Co na-
noparticles. The morphology of NC-800 was consistent with the Co@
NC-800 (Fig. 1f and g). The characteristic peaks of metallic Co in NC-
800 XRD pattern almost disappeared (Fig. S1), indicating the acid
treatment by HF could remove the Co cores [25].

Transmission electron microscopy (TEM) analysis confirmed the
rhombic dodecahedral morphology of Co@NC-800 (Fig. 1h and i) and
the metallic Co nanoparticles uniformly distributed with the particle
size of 5-20 nm. Moreover, the high-resolution transmission electron
microscopy (HRTEM) image (Fig. 1n) showed that Co nanoparticles
were confined in the carbon layers derived from the carbonization of
the 2-methylimidazole ligand in ZIF-67 [36] and the well-defined in-
terplanar distance about 0.20 nm in accordance with the (1 1 1) lattice
plane of metallic Co, which confirmed the XRD results. The selected
area electron diffraction (SAED) pattern showed individual rings which
belonged to the (1 1 1), (2 00), (2 2 0) and (3 1 1) facets of metallic Co
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Fig. 1. (a) Schematic illustration of the preparation procedure of Co@NC-800; SEM images of ZIF-67 (b and c¢), Co@NC-800 (d and e) and NC-800 (f and g); (h and i)
TEM images of Co@NC-800; (j) HAADF-TEM image of CoO@NC-800 and corresponding elemental mappings of (k) C, (1) N and (m) Co elements; (n) HRTEM image of
Co@NC-800 (the insert figure was the SAED pattern).

(Fig. 1n, inserted). Elemental mapping under TEM mode (Fig. 1j—m) the surface of ZIF-67 and Co@NC-800 (Fig. 3a). Compared to the
showed the homogeneous distribution of C, N, and Co elements pristine ZIF-67, the N content in Co@NC-800 decreased while the C
throughout the Co@NC-800. content increased. The Co 2p spectra (Fig. 3b) showed four distinct

XPS survey spectra verified the existence of C, N and Co elements on peaks of Co®>*-O/N, Co**-O/N, Co® and satellite peak, the content of
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Fig. 2. Powder XRD patterns of ZIF-67 and simulated ZIF-67 (a) and Co@NC-800 (b).
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Fig. 3. XPS spectra of ZIF-67 and Co@NC-800: (a) survey; (b) Co 2p; (c) C 1s and (d) N 1s.

Co® species in Co@NC-800 increased obviously compared to ZIF-67,
verified the XRD and TEM results. The Co nanoparticles could bond to
the adjacent N or O atoms to form Co-N or Co-O bonds and brought out
more catalytic active sites [37]. It can be observed that the Co 2p peak
components shifted into lower binding energy, suggesting that the
electron density on Co increased and the average electronic state of Co
shifted to the lower valence [38]. Moreover, the C 1s and N 1s peaks
moved to higher binding energy, indicating that electron transfer oc-
curred between Co, C and N atoms [39,40]. Additionally, the graphitic
N content increased obviously, thermal-instability pyridinic N tended to
transform into graphitic N [41]. The above results suggested that the
carbonization of ZIF-67 resulted in Co nanoparticles confined in the N-
doped porous carbon. Moreover, the inductively coupled plasma optical
emission spectrometer (ICP-OES) analysis quantified the Co content in
Co@NC-800 was 19.46%.

Nitrogen adsorption-desorption isotherm (Fig. 4a) indicated when
the p/po < 0.2, the adsorbed quantity within ZIF-67, NC-800 and Co@
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NC-800 samples increased rapidly, suggesting the presence of micro-
pores. However, when p/po > 0.2, the adsorbed quantity of the above
samples increased slowly while there was a hysteresis loop in the ad-
sorption isotherm of NC-800, indicating the existence of mesopores.
The nitrogen sorption results showed the typical type I isotherm for ZIF-
67 and Co@NC-800, matching its microporous character and the pore
size was mainly distributed in the range of 0-5 nm. Moreover, the ni-
trogen adsorption isotherm of NC-800 was analogous to type-IV, and
the pore size of NC-800 mainly fall into the range of 3-5 nm with some
larger ones between 10 and 30 nm. The Brunauer-Emmett-Teller (BET)
surface area of ZIF-67, NC-800 and Co@NC-800 were 2169.78 m* g~ ',
453.22m? g~ ! and 335.52 m? g}, respectively. The pore size and pore
volume of the samples were presented in Table 1. Compared to the
pristine ZIF-67, the pore size of NC-800 and Co@NC-800 increased
while the pore volume decreased. During the pyrolysis process, the ZIF-
67 surface started to shrink and the Co fell off. With HF treatment, the
obtained NC-800 possessed both micropores and mesopores. The

-(b)

40}
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Fig. 4. (a) Nitrogen adsorption and desorption isotherms for ZIF-8, NC-800 and Co@NC-800 (pore size distributions inserted); (b) room-temperature magnetization

curve of CoO@NC-800.
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Table 1
Surface area, pore size and pore volume parameters of ZIF-67, NC-800 and Co@
NC-800.

Samples Surface area” (m?g~')  Pore size” (nm)  Pore volume® (cm®g 1)
ZIF-67 2169.78 3.80 0.74
NC-800 453.22 12.20 0.54
Co@NC-800 335.52 4.71 0.24

@ Measured using N, adsorption with the Brunauer-Emmett-Teller (BET)
method.

> pore size in diameter calculated by the desorption data using
Barrett-Joyner-Halenda (BJH) method.

¢ Total pore volume determined at P/Py = 0.99.

microporous structure inherited from the pristine ZIF-67 while the
mesopores were due to the removal of Co nanoparticles. The porous
structure of the obtained Co@NC-800 was conductive to pollutants
diffusion and active sites exposition [42]. In addition, the magnetic
property of Co@NC-800 was tested by VSM system at room tempera-
ture (Fig. 4b). The magnetization saturation values (Ms) of Co@NC-800
was 53.38 emu g~ ' and the obtained Co@NC-800 exhibited a hys-
teretic behavior, the coercivity was 49.65 Oe [43]. The inserted figure
in Fig. 4b showed the Co@NC-800 could be attracted by the magnet,
thus the magnetic Co@NC-800 showed great potential in removing
pollutants from aqueous solution for its easy separation.

3.2. Catalytic performance

The catalytic activities of different systems towards TC degradation
was exhibited in Fig. 5a. TC concentration after dark adsorption for
0.5 h was selected as the zero point (the adsorption of TC by samples
was presented in Fig. S2). As presented in Fig. 5b, the TC solution was
stable while noticeable TC removal was showed in PMS, NC-800/PMS
and Co@NC-800/PMS systems due to the catalytic property of PMS.
However, the Co@NC-800/PMS system exhibited the highest TC de-
gradation rate with the kinetic constant of 0.7961 min ~ !, which was 41
times higher than that of NC-800/PMS system (0.0196 min~%).
Therefore, Co nanoparticles inside the N-doped porous carbon played a
vital role in TC removal activity. Moreover, the total organic carbon
(TOC) removal efficiency of Co@NC-800/PMS system was as high as
74.7% (Fig. S4). After catalytic reaction, the Co leaching of Co@NC-800
was and 0.147 mg L.~ . Moreover, the water stability of the pristine and
Co@NC-800 was tested by immersing 20 mg of catalyst in 100 mL
water for 24 h. The Co leaching of ZIF-67 and Co@NC-800 were
3.524 mg L~ ! and 0.021 mg L™, respectively. Therefore, the Co na-
noparticles were well confined in carbon layers in Co@NC-800 with
negligible Co leaching. Therefore, the Co nanoparticles were well
confined in carbon layers in Co@NC-800 with negligible Co leaching.
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3.3. Catalytic mechanism

Linear sweep voltammetry (LSV) was applied to estimate the elec-
tron-transfer process from the TC molecules to PMS on catalyst surface
[44,45]. As showed in Fig. S5, there was no obvious current density in
the presence of both TC solution and PMS when bare FTO acted as the
working electrode. Moreover, a minor current density was showed in
the copresence of PMS and TC when NC-800 was selected as a working
electrode. Obviously, the current response increased remarkably in the
electrolyte containing PMS and TC on the Co@NC-800 electrodes. The
LSV results indicated that electron transfer on Co@NC-800 electrode
interface was very fast compared to the pristine FTO electrode and NC-
800 electrode. Moreover, the radical-trapping experiments were con-
ducted and tert-butyl alcohol (TBA) as the trapping agent of "OH ra-
dical, methanol as the trapping agent of SO, and "OH radical, p-
benzoquinone (BQ) as the trapping agent of O," ~ radicals, NaN3 as the
trapping agent of 'O, [12,46]. As Fig. 6a and b showed, the TBA
showed almost little impact on TC degradation while the removal ef-
ficiency reduced from 93.6% to 66.7% with MeOH added. Moreover,
the removal efficiency significantly declined to 55.6% and 47.4% with
BQ and NaNj3 added, respectively. Thus, the O," ~ and 10, were the
dominating active species in TC degradation while SO," ~ also involved
in TC degradation in Co@NC-800/PMS system. Considering that 0"~
radicals can be generated from the excited oxygen molecules, the
contribution of O," ~ radicals may be affected by the atmosphere en-
vironment [7]. By continuously injecting N, into the reaction system,
the removal efficiency reduced from 93.6% to 78.4%, demonstrating
that O, radicals involved in the catalytic reaction. Electron para-
magnetic resonance (EPR) was further adopted by using 5,5-dimethyl-
1-pyrroline N-oxide (DMPO) as the spin scavenger to confirm the pre-
sence of O," ~ radicals and 2,2,6,6-tetramethyl-4-piperidinol (TMP) as
the spin scavenger for '0,. The characteristic signals of DMPO-O," ~
and TMP-'0, were displayed in Co@NC-800/PMS system after reacted
for 10 min, suggesting the formation of O, ~ radicals and 0, through
PMS activation (Fig. 6¢ and d).

We had also investigated the XPS spectra of Co@NC-800 after the
catalytic reaction (Fig. S6). The XPS survey spectra showed no notice-
able change, indicating the Co@NC-800 catalyst was stable. Interest-
ingly, the content of Co species and N species made a difference. The
content of Co®>" species was increased from 36.2% to 45.8% after re-
action while the Co®* species decreased from 17.1% to 14.3% and the
content of Co® decreased from 23.5% to 21.1%. During the catalytic
reaction, the valence state of Co species changed significantly. The
decrease of Co®* species was due to the reaction of Co>™ and PMS to
generate Co®*, SO5” ~ and H* (Eq. (1)). Besides, the Co®>" can activate
PMS to generate SO, —, Co®" and OH™ (Eq. (2)). Because of the
periodic cycle of Co®*/Co®*, the Co@NG-800/PMS system operated
with high efficiency [15,47]. Moreover, the Co® not only can active
PMS directly to produce SO,  ~ radicals and Co®>* (Eq. (3)) but also can
react with Co®>* or O, to obtain Co®* to ensure the sufficient Co®* to

(a) 10F (b)2 8] Fig. 5. (@) TC removal efficiencies under
: different systems (blank, PMS only, NC-800/
2.4 g';l';komy 22;53%’2“35,.,MS PMS and Co@NC-800/PMS); (b) TC de-
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Fig. 6. TC removal efficiencies of Co@NC-800/PMS system with different radical scavengers (a) and (b); EPR spectra for CoO@NC-800/PMS system in aqueous
dispersion by spin trapping with DMPO (c) and TMP (d) at different time intervals (Experimental conditions: catalyst dosage = 0.2 g L.™?; initial TC concentra-
tion = 30 mg L™'; PMS concentration = 0.2 g L™1); (e) the proposed reaction mechanism of TC degradation by Co@NC-800/PMS system.

activate the PMS (Egs. (4) and (5)). On the other hand, the content of
pyridinic N increased from 43.2% to 65.8% and the graphitic N de-
creased from 35.6% to 19.1% after the catalytic reaction, suggesting the
electron transfer may exist between N-Co and TC molecules [48]. Based
on the trapping experiments, the '0, and O,” ~ radicals were involved
in the catalytic reaction. O," ~ radicals can be obtained by the gen-
eration of H,O5 (Eq. (6)) and the reaction between H,O, and Co®* to
produce HO,  (Eq. (7)) and the decomposition of HO,  to produce
O," ™ radicals (Eq. (8)) [49]. Moreover, the O," ~ radicals could react
with HO,™ to produce 'O, and the self-reaction of O,” ~ radicals could
regenerate H,O, and 10, (Egs. (9) and (10)). The 10, can be produced
by the self-reaction of SOs” ~ (Egs. (11) and (12)) for the high reaction
rate (= 2 X 108 m™' S and low activation energy
(7.4 % 2.4 keal mol™ 1) [50].

Based on the above deduction, non-radical (*O,) and radical
(SO, ~ and O," ) processes were included in TC degradation by Co@
NC-800/PMS system (the proposed reaction mechanism was showed in
Fig. 6e). The porous N-doped carbon skeleton with high porosity and
surface area not only attributed to the uniform distribution of Co na-
noparticles but also promoted the adsorption of TC molecules and the
electron transfer between Co@NC-800 and TC molecules [39]. The Co
nanoparticles were confined within the carbon, which was vital for the

stability of catalyst [18]. The electron transfer between N and Co spe-
cies made the Co@NC-800/PMS system operated efficiently. Moreover,
the magnetic Co® made the Co@NC-800 be separated with high effi-
ciency. Therefore, the Co@NC-800 showed a superb activity in the
activation of PMS for TC degradation.

Co3* + HSO; — SO;™ + Co** + H* @
Co?* + HSO; — SO; + Co** + OH- @)
Co® + 2HSO; — 2SO, + Co** + 20H- 3
2C0° + 2H,0 + O, — 2Co%** + 40H~ (€]
Co® + 2Co** — 3Co** (5)
HSO5 + H,0 - H,0, + HSO; (6)
Co** + H,0, — Co** + HO; + H* 7
HO; — Oy + H* )
0, + HO, -» HO; + 0, 9

202_ + H > H202 -|‘1 02 (10)
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Fig. 7. LC-MS analysis of TC intermediates in the degradation reaction with Co@NC-800/PMS (a-e); the proposed transformation pathways of TC degradation (f).
S0 + SO — S,0¢™ + 0, a1 pH value was 12, the Co(OH), might formed and reduced the catalytic
performance [52]. Thus, the Co@NC-800/PMS system performed ex-
— — - 41 . . . . .
S0s™ + SO5™ — 250 + O, 12) cellent degradation efficiency towards TC in a wide pH range of 4-10.

3.4. TC degradation pathway

Based on the catalytic mechanism, the active species (SO4" —, O3~
and '0,) produced by Co@NC-800/PMS system can attack the TC
molecules and generate low molecular weight products. As showed in
Fig. 7e, the peak at the retention time of 4.469 min was corresponded to
the TC molecules (the analysis of TC intermediates was showed in the
Supporting Information). Compared to the original TC solution, the
peak intensity of TC molecules in TC solution after reaction reduced
remarkably, suggesting the high degradation efficiency of Co@NC-800/
PMS system. Fig. 7a—d showed the degradation products and their
possible molecule structures. The proposed transformation pathway
was presented in Fig. 7f. It was obvious that the TC molecules was
oxidized and finally transformed to CO5 and H,O. The TOC removal
efficiency was as high as 74.67%, indicating the superiority of both the
radical and non-radical pathway in Co@NC-800/PMS system.

3.5. Effects of experimental conditions on catalytic performance

The versatility of Co@NC-800/PMS system under various condi-
tions was of great importance. The removal efficiency could be im-
proved by increasing PMS concentration (Fig. 8a) and reaction tem-
perature (Fig. 8d). The TC concentration had negative effect on removal
efficiency while the removal efficiency of 85.8% was obtained as the TC
concentration was 50 mg L™! (Fig. 8b). Anyhow, high removal effi-
ciency in low TC concentration was beneficial for actual wastewater
treatment. Solution pH value had an effect on the removal efficiency of
Co@NC-800/PMS system (Fig. 8c). In the pH value range of 4-10, high
removal efficiency (more than 90%) could be obtained, while the re-
moval efficiency of pH 2 and pH 12 were 85.4% and 68.9%, respec-
tively. The point of zero charge (pH,.) of Co@NC-800 was calculated
to be 8.13 (Fig. S7), thus the TC molecules and Co@NC-800 with the
same charge when the pH value was 2 and 12, the electrostatic repul-
sion between Co@NC-800 and TC molecules resulted in the low re-
moval efficiency. In addition, the HSOs~ was mainly in the form of
H,SOs at pH 2, which limited the decompose of HSOs ™~ [51]. When the

Moreover, the common inorganic species (like Cl~, S0,427, and
PO,>" ions) with various concentrations had a negative effect on TC
degradation (Fig. S8a—c). The Cl~, SO,2~, and PO,>~ ions can quench
the SO4"~ and "OH radicals [53]. Obviously, compared to Cl ™, S042~
ions, PO,>~ ions had the greatest effect on degradation efficiency.
PO~ ions not only trapped the radicals but also chelated with Co
[54]. In addition, humic acid with various concentrations had little
impact on TC degradation (Fig. S8d). The catalytic performance of Co@
NC-800/PMS system was evaluated in multiple antibiotics degradation
(Fig. 9a), such as TC, OTC (oxytetracycline), CTC (chlortetracycline)
and DOX (deoxytetracycline). The high removal efficiency of Co@NC-
800/PMS system could be obtained (more than 90%). Surprisingly,
high TC removal efficiencies of 93.6%, 91.3%, 91.7% were obtained by
Co@NC-800/PMS system in pharmaceutical wastewater, river water
and tap water (Fig. 9b, the water quality parameters were listed in
Table S1). In a word, the CoO@NC-800 system exhibited high removal
efficiency towards multiple antibiotics and suffered less interference
from solution pH value, the co-existing inorganic ions and organic
matters, suggesting a great potential in various water bodies for the
combined action of non-radical and radical pathways.

3.6. Comparation of homogeneous catalytic system and stability tests

The Co@NC-800/PMS system was compared with homogeneous
Co?* /PMS system. Fig. 10a showed the removal efficiency of 68.1%
was obtained by the homogeneous Co®* /PMS system in 30 min, while
the TC removal efficiency of 91.2% could be obtained by Co@NC-800/
PMS system within 5 min. The experimental results highlighted the
high degradation efficiency of the Co@NC-800/PMS system. In addi-
tion, compared to the homogeneous system, the Co@NC-800/PMS
system exhibited excellent recyclability. The Co@NC-800 catalyst after
reaction was collected by an external magnet and ultrasonically washed
in water and vacuum dried for further use. After reused for 4 times, the
removal efficiency of Co@NC-800 was almost no declined (Fig. 10b),
suggesting the Co@NC-800 catalyst possessed great recyclability and
the Co@NC-800/PMS system had great potential for wastewater re-
mediation.
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Fig. 8. (a) Effects of PMS dosage (Experimental conditions: catalyst dosage = 0.2 g L™}, initial TC concentration = 30 mg L™ 1); (b) TC concentration (Experimental
conditions: catalyst dosage = 0.2 g L™ !; PMS concentration = 0.2 g L™1); (c) solution pH value (Experimental conditions: catalyst dosage = 0.2 g L™ 1; initial TC
concentration = 30 mg L~ '; PMS concentration = 0.2 g L™') and (d) temperature (Experimental conditions: catalyst dosage = 0.2 g L™ !; initial TC concentra-
tion = 30 mg L™ !; PMS concentration = 0.2 g L™!) on TC degradation by Co@NC-800/PMS system.

4. Conclusion

In this study, ZIF-67 was applied as a self-sacrificing template to
fabricate Co@NC-800 through a two-step pyrolysis process.
Characterization results showed that the obtained Co@NC-800 in-
herited rhombic dodecahedron morphology, the Co nanoparticles
formed in the pyrolysis process and confined within the N-doped porous
carbon. Moreover, the porous structure of Co@NC-800 was conductive
to pollutants diffusion and active sites exposition, which was attributed
to PMS activation by Co nanoparticles. The TC degradation kinetics of
Co@NC-800/PMS was 41 times faster than NC-800/PMS. Moreover, the
Co@NC-800/PMS system suffered less interference from co-existing
anions/organic matters in water and showed high efficiency in a wide
pH range of 4-10. More importantly, Co@NC-800/PMS system showed
high degradation efficiency towards multiple antibiotics and displayed
high TC removal rate in various water bodies. Trapping experiments
showed the SO, ~, O,” ~ and 'O, were involved in PMS activation and

both the radical and non-radical pathways in Co@NC-800/PMS system
presented superiority in TC degradation. The porous N-doped carbon
skeleton promoted the adsorption of TC molecules and the electron
transfer between Co@NC-800 and TC molecules. The Co nanoparticles
were well confined and no obvious Co leaching after catalytic reaction,
which was vital for the stability of catalyst. Moreover, the existence of
magnetic Co® made the CO@NC-800 be separated with high efficiency.
Therefore, this work provided a design of PMS catalyst using confine-
ment for TC-containing wastewater remediation and also proposed a
radical and non-radical pathway with high efficiency to understand the
mechanism of the PMS activation reaction.
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