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ABSTRACT

Biochar, a valuable product from the pyrolysis of agricultural and forestry residues, has been widely applied as soil
amendment. However, the effect of different types of biochar on soil microorganisms and associated biochemical processes
in paddy soil remains ambiguous. In this study, we investigated the impact of biochars derived from different feedstocks
(rice straw, orange peel and bamboo powder) on the dynamics of short-chain fatty acids (SCFAs), iron concentration and
bacterial community in paddy soil within 90 days of anaerobic incubation. Results showed that biochar amendment overall
inhibited the accumulation of SCFAs while accelerating the Fe(III) reduction process in paddy soil. In addition, 16S rRNA
gene sequencing results demonstrated that the «-diversity of the bacterial community significantly decreased in response
to biochar amendments at day 1 but was relatively unaffected at the end of incubation, and incubation time was the major
driver for the succession of the bacterial community. Furthermore, significant correlations between parameters (e.g. SCFAs
and iron concentration) and bacterial taxa (e.g. Clostridia, Syntrophus, Syntrophobacter and Desulfatiglans) were observed.
Overall, our findings demonstrated amendment with different types of biochar altered SCFA profile, Fe(Ill) reduction and
bacterial biodiversity in rice paddy soil.
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INTRODUCTION et al. 2018). In China, ~174-249 million tons of crop residues
and ~1081 million tons of forestry waste are produced each
year (Chen 2016; Xie et al. 2018), which provides a considerable
amounts of biomass feedstock. Biochar, a porous and carbon-
rich solid intentionally derived from biomass and green waste

Sustainable development emphasizes the conversion of waste
into renewable energy, and of the waste sources, the low tox-
icity and large quantity of biomass residues has stirred exten-
sive research interest worldwide (Qambrani et al. 2017; Ramos
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by a pyrolysis process, has been proposed for large-scale appli-
cations, such as adsorbing pollutants in wastewater, contam-
inated soils and sediments (Wang et al. 2017a; Qiao, Li and Li
2018; Tang et al. 2018; Wang et al. 2019a), increasing crop yields
in nutrient-poor soils by holding nutrients and building fertil-
ity (Hussain et al. 2016), as well as improving soil quality and
mitigating global climate change through carbon sequestration
(Abdel-Fattah et al. 2015; Agegnehu, Srivastava and Bird 2017).
Hence, the addition of biochar to the environment enables the
reuse of waste and may have beneficial effects on the ecosystem.

Previous studies have demonstrated that biochar addition
had a positive effect on pH (Liu et al. 2016), total carbon content
(Lu et al. 2014) and available phosphorus (Gul and Whalen 2016),
while having a negative effect on CH; emission (Wang et al.
2019b) and N,O emission (Cayuela et al. 2014) in soil. Fe(III)
reduction is an important biochemical process in paddy soil,
and biochar was found to accelerate Fe(IIl) reduction due to its
ability to increase the production of dissolved organic carbon
(Jia et al. 2018) and to stimulate the activity of fermentative
Fe(Ill)-reducing microorganisms (Tong et al. 2014; Wang et al.
2017b). In addition, short chain fatty acids (SCFAs) such as
acetate, propionate and formate, the main metabolic products
of anaerobic bacteria fermentation in paddy fields, could serve
as electron donors for those iron-reducers and other functional
microbes (He and Qu 2008), and biochar amendment might
also lead to a shift in the accumulation/consumption of SCFAs
in paddy soil. In an anaerobic digestion system, the addition
of biochar was found to reduce the maximum accumulation
of fatty acids during anaerobic composting of sludge, which
was mainly due to an increase in the SCFA-utilizing bacterial
population (Awasthi et al. 2018). Biochar as an electron transfer
mediator could also promote the syntrophic oxidation of SCFAs
in the anaerobic digestion process, and with the accumulation
of fatty acids, the pH buffering capacity introduced by biochar
was observed to maintain stable pH and efficient methane
production (Wang et al. 2018). However, our knowledge of the
effect of biochar amendment on the shift of SCFAs and iron
profile in paddy soil is rather limited.

Adding biochar also alters the bacterial abundance and com-
munity structure in rice paddy soil. For instance, a 6-week study
showed that biochar amendment substantially changed the «-
diversity of the bacterial population and significantly increased
the relative abundance of Flammeovirgaceae and Chitinopha-
gaceae, which both have an important role in organic matter
decomposition (Yoon et al. 2007), and Hyphomicrobiaceae, which
are able to modulate and fix nitrogen (Xu et al. 2014a), while
in a 5-month anaerobic incubation experiment and a 6-year
field experiment, biochar addition did not lead to a significant
change of bacterial abundance and community structure (Tian
et al. 2016; Song et al. 2017). Considering that the composi-
tion of biochar largely depends on the feedstocks, the amend-
ment of different types of biochar to soil may result in diverse
impacts on the bacterial community. A recent study showed
that adding biochar derived from rice straw, manure or wood
chips to rice paddy soil resulted in different changes of domi-
nant bacterial taxa, e.g. Proteobacteria, Actinobacteria, Chlorobi and
Bacteroidetes. In addition, a significant enrichment of Clostridium
and Thermincola was found in manure biochar and wood chip
biochar amended soil, respectively (Yuan et al. 2018). Biochar
generated from different sources of feedstock shows variance
in functional groups, surface area and carbon content, which
might explain the dissimilar response of the bacterial commu-
nity to biochar amendment in paddy soil (Kloss et al. 2012; Zhao
et al. 2013).

Therefore, to investigate whether biochar addition would
have an effect on SCFAs profile, Fe(IIl) reduction and bacterial
biodiversity in paddy soil and whether different types of biochar
would have different effects, three biochars derived from rice
straw (RB), orange peel (OB) and bamboo powder (BB) were added
to paddy soil respectively and incubated anaerobically in the lab-
oratory for 90 days. Our objectives were: (i) to characterize the
chemical composition and properties of the three biochars; (ii) to
investigate the influence of biochar amendment on SCFAs and
iron variation in rice paddy soil during the incubation; (iii) to
determine the response of bacterial community structure and
abundance to biochars and the correlation between bacterial
taxa and environmental variables over incubation time.

MATERIAL AND METHODS
Biochar preparation and characterization

Rice straw, orange peel and bamboo powder, representing differ-
ent feedstocks from forestry and agricultural residues, were col-
lected and used for biochar production. Before the pyrolysis step,
those feedstocks were dried at 60°C and pulverized into powder.
Then, three types of biochar, i.e. RB, OB and BB were prepared in
a furnace (SK-G04123K, China) at 600°C for 1 h with a constant
flow of N, during the pyrolysis. The products were then vacuum
filtered with 1 M HCI solution and ultrapure water several times
to remove dust and dried at 60°C. Finally, three types of biochar
were sieved (a 100-mesh sieve) separately and stored at room
temperature until use.

Biochar was mixed with deionized water (1:10 ratio, v/v) for
pH measurement with a pH probe (Leici Instrumentation Fac-
tory, PHS-3C, China). The morphology and elemental distribu-
tion were observed by a scanning electron microscope (SEM,
Hitachi S4800, Japan), operating at 20 kV with an energy dis-
persive X-ray detector. X-ray photoelectron spectroscopy (XPS,
Thermo Scientific, Escalab 250XI, USA) was used to determine
the elemental composition, and the surface functional groups
were studied by Fourier transform infrared spectroscopy (FTIR,
Thermo Scientific, Nicolet 5700, USA).

Soil sampling and incubation

Soil from the plow layer (0-20 cm) was sampled from a rice paddy
field in Xiangtan (27°53’N, 112°31’E), Hunan province, China in
November 2018. Soils from six nearby sampling plots was fully
mixed, air-dried and sieved with a mesh size of 2 mm.

For batch experiments, 10 g of paddy soil and 20 mL of
N,-flushed, ultra-pure water were added into serum bottles
(120 mL), which afterwards were sealed with rubber stoppers
and aluminum caps. The headspace was flushed with N, for
5 min to ensure an anaerobic atmosphere. For each biochar-
amended treatment, 0.1 g of biochar (RB, OB or BB) was added
separately, and bottles without biochar addition (NB) were set
up as a control. Each treatment was prepared in triplicate and
incubated at 30°C without shaking. On eight different sampling
days (day 0, day 1, day 5, day 15, day 40, day 60, day 70 and day
90), 12 bottles (4 treatments x 3 replicates) were sacrificed for
further analysis. The samples taken after 2 h of incubation were
identified as day 0.

Chemical measurements

The pH value and water content of samples taken during the 90
days of incubation were measured as described before (Lu et al.
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2015). The ferrous iron was extracted by 4.5 mL of 0.5 M HCl from
0.5 mL of soil suspension at 25°C for 24 h and the total iron was
reduced to ferrous iron by hydroxylamine hydrochloride at 60°C
for 2 h after extraction. Then the concentration of ferrous iron
was determined using a 1,10-phenanthroline colorimetric assay
after centrifugation at 5000 rpm for 5 min, and the ferric con-
centration was calculated as the difference in value between
total iron and ferrous iron (Ma, Conrad and Lu 2012). To anal-
yse SCFAs, e.g. acetate, propionate, butyrate, isobutyrate, valer-
ate and isovalerate, 1 mL of filtrate from the soil suspension was
collected through a 0.45 um syringe fliter in a 1.5 mL gas chro-
matography vial, and 3% H3;PO4; was added to adjust the pH to
~3.0. A gas chromatograph (Agilent Technologies, 7890A, USA)
equipped with a flame ionization detector (FID), a thermal con-
ductivity detector (TCD) and an Agilent DB-FFAP column (30 m x
0.32 mm x 0.5 mm) was utilized to determine the concentration
of six SCFAs (Yuan et al. 2006).

High-throughput sequencing of bacterial 16S rRNA
genes

At different time points of destructive sampling, fresh slurry
from each bottle was collected and stored at —80°C. The sam-
ples taken at days 0, 1, 15, 40 and 90 during anaerobic incuba-
tion were selected for molecular analysis. Total genomic DNA
in 0.5 g of the slurry samples was extracted by DNeasy Power-
Soil Kit (Qiagen, Germany) according to the protocol described
by the manufacturer. The quality and quantity of extracted
DNA were measured using NanoDrop 2000 (Thermo Scientific,
USA) and agarose gel electrophoresis (Tanon 2500, China). PCR
amplification of the V3-V4 region of bacterial 16S rRNA genes
was carried out on a My Cycler thermal cycler (Bio-Rad 580BR,
USA) with the primer set: 343F (5-TACGGRAGGCAGCAG-3') and
798R (5'-AGGGTATCTAATCCT-3'). The amplicons after a qual-
ity test with gel electrophoresis were purified with Agencourt
AMPure XP beads (Beckman Coulter, USA). After another round
of amplification and purification, those amplicons were quanti-
fied using a Qubit dsDNA assay kit (Life Technologies Q32852,
China). Finally, the purified PCR amplicons were equimolarly
pooled and sequenced on an Illumina MiSeq platform at Shang-
hai OE Biotech. Co., Ltd. (Shanghai, China).

Raw sequencing data were preprocessed using Trimmo-
matic software (Bolger, Lohse and Usadel 2014) to detect and
cut off ambiguous bases (N’ bases: representing bases that
unsequenced and undefined) and low quality sequences. After
trimming, paired-end reads were assembled using FLASH soft-
ware (Reyon et al. 2012), and the sequence data were further
quality-filtered to abandon reads with ambiguous, homologous
sequences or those with length was <200 bp. Reads with 75% of
bases above Q20 were retained. Then, reads with chimera were
detected and removed by QIIME software (version 1.8.0) (Capo-
raso et al. 2010). After removing primer sequences, clean reads
were clustered to generate operational taxonomic units (OTUs)
using Vsearch software at the 97% similarity level (Edgar et al.
2011). The representative read of each OTU that was selected
using the QIIME package was annotated and blasted against the
SILVA database using the ribosomal database project (RDP) clas-
sifier with a confidence threshold of 70% (Wang et al. 2007).

Statistical analysis

OriginPro 8 was used to conduct the data processing and one-
way analysis of variance (one-way ANOVA). «-Diversity includ-
ing Chaol, Simpson and Shannon indices were calculated in
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the R package Vegan (Oksanen et al. 2008). Bray-Curtis dis-
tance was calculated from the OTUs abundance table as a mea-
sure of between-community () diversity. A heatmap based on
Bray-Curtis distance and non-metric multidimensional scaling
(NMDS) based on OTUs abundance were used to visualize the
difference among samples and potential clustering by R soft-
ware (Zuur, leno and Meesters 2009) and CANOCO 5.0 package
(ter Braak and Smilauer 2012), respectively. Linear discriminant
analysis (LDA) effect size (LEfSe) revealed the significantly dif-
ferent species in relative abundance among control and biochar-
amended treatments. Spearman’s correlation coefficients were
calculated to determine the correlation between bacterial com-
munity and environmental variables and the heatmaps were
created by R software.

Nucleotide sequences accession number

Nucleotide sequence data reported in this study were deposited
to National Center for Biotechnology Information (NCBI)
under bioproject number (PRJNA578799) and accession number
(SRP226572).

RESULTS
Chemical and morphological properties of biochars

Three different feedstocks were applied to generate biochars,
i.e. RB, OB and BB. Table 1 shows that biochars varied consid-
erably in chemical properties including pH, C (%), N (%) and O
(%) depending on the type of feedstock. It was noticed that the
pH of OB (7.9) was lower than that of RB (8.3) and BB (8.6), which
mightbe due to the different content of alkali metals (e.g. Mg and
Ca) in the original feedstocks as previously reported (Abdelhafez
and Li 2016). Elemental analysis showed that C and O were the
dominant elements present in all three biochars, accounting for
88.86-94.27% and 5.73-9.49% of element composition, respec-
tively. In addition, the morphological properties of biochars var-
ied considerably depending on the feedstock type. SEM images
showed RB with a smooth, elongated appearance with ordered
porous structure (Fig. 1A), while a more smooth appearance was
observed in BB with visible porous (Fig. 1C), and OB had a rough,
irregular appearance and almost no visible porosity (Fig. 1B).

The chemical compositions and structure of the three types
of biochar were further characterized. The wide-scan XPS spec-
tra (Fig. 1D) show that the three biochars all have low O:C atomic
ratios (0.06-0.11), and the C 1 s XPS spectra results reveal the
same oxygen and carbon functional groups across the three
types of biochar. Deconvolution of the C 1 s spectra of RB, BB
and OB were fitted into three peaks, namely, aromatic C—C/C =
C at 284.3-284.4 eV, C—O at 285.3-286.2 eV and O—C-0O/C =0 at
288.1-293.6 eV (Figs 1E-G). In all samples, the dominant func-
tional groups were C—C/C = C, which was mainly contributed by
the abundant carbon of biochars. These results were supported
by FTIR spectra which could also indicate the surface functional
groups in the biochars (Fig. 1H). The FTIR spectral properties
of RB showed obvious absorption for the C = C, O-H and C =
O stretching vibration at 1397 cm~!, 1636 cm~! and 3397 cm™?,
respectively. Also according to previous reports, the band at 1085
cm~? reflected the vibration of C—0, and both of 796 cm~?! and
882 cm~! bands could be assigned to C—H stretching vibrations
(Xiao, Chen and Zhu 2014, Lu et al. 2017). Biochars OB and BB
shared similar FTIR spectra, which showed weaker C—O and C
= O absorption in comparison to RB, probably due to the higher
oxygen content in RB.
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Table 1. Chemical properties of three types of biochar.

Biochar Feedstock Pyrolysis temperature (°C) pH C (%) N (%) O (%)
RB Rice straw 600 for 1 h 8.3 88.86 1.66 9.49
OB Orange peel 600 for 1 h 7.9 93.61 0.5 6.39
BB Bmboo powder 600 for 1 h 8.6 94.27 0.26 5.73
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Figure 1. SEM images of (A) rice straw biochar (RB), (B) orange peel biochar (OB) and (C) bamboo powder biochar (BB); (D) XPS spectra of RB, OB and BB; C 1 s spectra of

(E) RB, (F) OB and (G) BB; (H) FTIR spectra of the three types of biochar.

The variation in physicochemical properties of paddy
soil after biochar amendment

The change of pH value (Fig. S1, see online supplementary mate-
rial) followed a similar increasing trend with the four different
treatments during incubation, leading ultimately to pH values
ranging from 6.58 + 0.03 (OB treatment) to 6.74 + 0.02 (NB treat-
ment) at day 90.

SCFAs including acetate, propionate, butyrate, isobutyrate,
valerate and isovalerate were detected from the beginning of
incubation (Fig. 2). With regard to overall acids, their con-
centrations undulated slightly within the first 15 days, and
decreased sharply at day 40 to reach relatively low levels, and

then increased slightly at the late stage (except for BB treat-
ment at day 90). Specifically, acetate was the most abundant
SCFA (up to 0.81 + 0.04 mM) from day 1 and had a long pres-
ence time during the whole incubation, while propionate (up to
0.12 + 0.02 mM), butyrate (up to 0.29 + 0.02 mM) and valerate
(up to 0.35 + 0.02 mM) only accumulated in the early period and
were completely consumed after day 40. During the 90 days of
incubation, a low amount of isobutyrate (up to 0.07 £ 0.004 mM)
was detected, and isovalerate (up to 0.19 + 0.01 mM) was present
except for on days 40 and 70. Biochar amendment (especially BB
treatment) inhibited the accumulation of SCFAs on days 5, 60
and 90, and even acetate was depleted at day 90 with BB treat-
ment.
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Figure 2. Effects of biochar addition on the production of SCFAs in paddy soil over incubation times. Error bars indicate standard deviation, n = 3. Different lowercase
letters indicate significant differences between treatments on the same sampling day at the 5% level according to a one-way ANOVA test.

As shown in Fig. 3, the concentrations of Fe(ll) in all treat-
ments increased from the beginning and slightly decreased at
the late stage. The change of Fe(Ill) showed different trends,
which firstly increased at day 1 and declined afterwards but
increased slightly at day 60. During the 90 days of incubation,
biochar additions promoted the accumulation of Fe(Il), espe-
cially for RB treatment at the late stage. For Fe(Ill) concentra-
tion, biochar additions had a positive effect on Fe(IIl) accumu-
lation in the early stage (especially for BB at day 0 and OB
at day 5), then an obvious transformation from Fe(III) to Fe(II)
was observed from day 5 and, at the end of the incubation
RB treatment had a higher concentration of Fe(lll) than NB
treatment.

Bacterial community diversity

A total of 2 086 060 valid tags were obtained through quality fil-
tering from 60 soil samples (5 sampling dates x 4 treatments x 3
replicates), and the classified tags were clustered into 7932 OTUs
with 97% sequence identity. The amount of OTUs in each sam-
ple ranged from 1456 to 3377 as shown in Table 2 and the OTU
number in each sample had a sharp decrease at the early stage
(day 1-15), then OTU number increased slowly and remained
steady. Although OTUs of four treatments all recovered to a sim-
ilar level at the end of incubation, the addition of biochar sig-
nificantly increased the difference between the maximum and
minimum number of OTUs, especially for the BB treatment.
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Figure 3. Effects of biochar amendment on (A) Fe(Il) and (B) Fe(Ill) in paddy soil over incubation time. NB, RB, OB and BB represent non-biochar, rice straw biochar,
orange peel biochar and bamboo powder biochar treatment, respectively. Error bars represent standard deviation, n = 3. Different lowercase letters indicate significant
differences between treatments on the same sampling day at the 5% level according to a one-way ANOVA test.

Table 2. Bacterial community richness and diversity measured as OTU numbers, Chao1, Simpson and Shannon indices from different biochar
treatments (NB, RB OB, and BB). Different lowercase letters indicate significant differences between treatments no the same sampling dye at

the 5% level according to a one-way ANOVA test.

Time Treatment OTUs Chaol Simpson Shannon
Day 0 NB 3295 £ 57 a 2741 + 13 a 0.9941 + 0.0003 ab 9.10 + 0.07 ab
RB 3219 £ 78 a 2727 + 144 a 0.9941 + 0.0006 ab 9.12 + 0.10 ab
OB 3237 £ 6la 2806 + 61 a 0.9939 + 0.0001 ab 9.12 + 0.07 ab
BB 3387 £ 76 a 2785 + 36 a 0.9947 + 0.0004 ab 9.17 £ 0.09 a
Day 1 NB 2174 + 64 cd 2125 + 31bc 0.9720 + 0.0018 ¢ 7.07 £ 0.06d
RB 1899 + 60 d 1808 + 37d 0.9664 + 0.0035 d 6.90 + 0.06 de
OB 2128 + 126 cd 1982 + 51 cd 0.9574 + 0.0022 e 6.80 + 0.09e
BB 2409 + 84 bc 2048 + 109 ¢ 0.9684 + 0.0029 cd 7.06 + 0.15d
Day 15 NB 2507 + 46 bc 2248 + 154 be 0.9921 + 0.0012 ab 8.63 £ 0.12¢
RB 1980 + 326 cd 2095 + 19 bc 0.9917 + 0.0013 ab 8.55 + 0.12¢
OB 1654 + 85de 2026 + 126 cd 0.9911 + 0.0012 b 8.58 £ 0.07 ¢
BB 1483 + 20 e 2105 + 52 bc 0.9919 + 0.0013 ab 8.62 + 0.13¢
Day 40 NB 2324 £+ 327 ¢ 2230 + 29 be 0.9940 + 0.0010 ab 8.86 + 0.12 bc
RB 2710 £ 50b 2273 + 94 b 0.9948 + 0.0004 ab 891 + 0.06 b
OB 2691 + 31b 2162 + 107 bc 0.9941 + 0.0007 ab 8.84 + 0.08 bc
BB 2549 + 69 bc 2144 + 6 bc 0.9940 + 0.0004 ab 8.82 + 0.07 bc
Day 90 NB 2751 + 61b 2257 + 45bc 0.9951 + 0.0003 a 9.00 + 0.06 ab
RB 2729 + 73b 2146 + 89 bc 0.9950 + 0.0002 ab 8.96 + 0.05 ab
OB 2480 + 83 bc 2271 + 51bc 0.9948 + 0.0002 ab 8.95 + 0.06 ab
BB 2523 + 35bc 2184 + 71bc 0.9948 + 0.0002 ab 8.91 + 0.06 b

Further OTU analysis (Fig. S2, see online supplementary mate-
rial) showed that the number of core OTUs, total OTUs and their
ratio had similar fluctuation during incubation, decreasing from
day O to day 15, while increasing thereafter.

The «-diversity of the 16S rRNA gene-based bacterial com-
munity for four different treatments at five individual sampling
days are shown in Table 2. The Chaol index represents the rich-
ness of the microbial community, and Simpson and Shannon
biodiversity indices are measures balancing between richness
and evenness (Foggo, Rundle and Bilton 2003). The richness of
the bacterial community initially was significantly higher than
at the late stage, and then an obvious drop was observed in all
treatments at day 1, especially with the RB treatment. Simpson
and Shannon indices analysis showed a significant decrease of
diversity in the bacterial community in the four different biochar

treatments at day 1, the OB treatment in particular showed the
most drastic loss. Noticeably, all treatments exhibited a recovery
of evenness from day 15. Overall, the «-diversity of the bacterial
community significantly decreased for a short time and reached
a level equal to that in the initial paddy soil, and additions of
biochar stimulated the decline of bacterial diversity especially at
the early stage (day 1, especially for RB and OB treatment), which
also slightly inhibited the recovery of «-diversity in paddy soil.
To further explore the succession of bacterial community
during incubation and the effect of biochar amendments, NMDS
were performed based on high-throughput sequencing data of
16S rRNA genes. As shown in Fig. 4, 60 samples were grouped
into five envelopes by incubation time, and the differences were
obviously narrowed with the process of incubation. However, the
difference between the four different biochar treatments (NB,
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Figure 5. Succession of bacterial community in paddy soil amended with differ-
ent types of biochar over incubation time at the phylum level (phyla with <1%
relative abundance are grouped as 'others’). Error bars indicate standard devia-
tion, n = 3.

RB, OB and BB) was rather indiscernible. Therefore, a more sig-
nificant influence of incubation time on the bacterial commu-
nity structure was identified in comparison to biochar amend-
ment. Heatmap analysis based on Bray—Curtis distance was also
applied to further statistically assess the succession of the bac-
terial community (Fig. S3, see online supplementary material).
Bray—Curtis distance digitized the similarity of the two samples,
and the heatmap visualized the distance by color (blue color
represents higher similarity and red color lower similarity). The
clustering and heatmap analyses were in good agreement with
NMDS results, suggesting that the samples were clustered with
incubation time and the effect of the biochar types was less obvi-
ous. Bacterial community at the late stage of incubation (espe-
cially days 40 and 90) showed high similarity, while samples at
day 1 were separated and exhibited different bacterial compo-
sition, indicating a clear succession of the bacterial community
with anaerobic incubation of paddy soil with/without biochar
amendment. Permutational multivariate analysis of variance
(PERMANOVA) further confirmed that incubation time was the
major driver of the change in soil bacterial community compo-
sition rather than biochar addition (Table S1, see online supple-
mentary material).

Bacterial community composition

The taxonomic composition in each sample was determined
at both the phylum (Fig. 5) and class (Fig. S4, see online sup-
plementary material) level to further explore the dynamics
of the bacterial taxa during incubation. As shown in Fig. 5,

among the bacterial taxa with relative abundance >1%, Pro-
teobacteria (15.78-42.43%) and Firmicutes (9.90-71.87%) were the
most dominant bacterial phyla in all samples, consistent with
the results of a previous study (Li et al. 2016). The abun-
dance of these two phyla showed a wide range of variation
because of the short and dramatic reversal at day 1, and then
Proteobacteria returned to the initial level, whereas Firmicutes
decreased continuously with 6.5, 4.0, 6.4 and 1.4% loss com-
pared with the beginning (day 0) with NB, RB, OB and BB treat-
ments, respectively. The addition of three different types of
biochar (especially OB) was beneficial to the abundance of Fir-
micutes but not Proteobacteria. Other bacterial taxa, such as Acti-
nobacteria (3.55-18.12%), Acidobacteria (1.01-12.12%), Bacteroidetes
(0.81-11.08%), Gemmatimonadetes (1.20-7.34%), Chloroflexi (0.64—
5.78%) and Chlorobi (0.29-5.54%), were all detected in the ini-
tial samples, but showed an obvious decrease at day 1, and
then increased gradually at the late stage. The relative abun-
dances of these phyla were all higher at day 90 in compari-
son to day O, except for Actinobacteria. At the class level (Fig.
S4), Clostridia (9.33-60.63%) and Deltaproteobacteria (4.20-18.30%)
were major classes during the incubation. Clostridia and Bacilli
that belong to phylum Firmicutes showed a significant increase
while Deltaproteobacteria (4.20-18.30%), Alphaproteobacteria (3.21-
12.77%), Betaproteobacteria (3.17-15.31%) and Gammaproteobacte-
ria (2.46-10.80%) that belong to phylum Proteobacteria decreased
at day 1, contributing to the distinct change at phylum
level.

Further, LEfSe analysis (Fig. 6) was conducted to identify the
bacterial taxa that significantly differed among treatments at
each taxonomic level. Biomarkers at each level could be used
as candidate indicators to distinguish the difference of bacte-
rial community among four different treatments. Initial differ-
ences among samples at day 0 could be explained by soil hetero-
geneity, and as the incubation proceeded, shifts in differential
taxa were observed. No clear correlation between phylum-level
biomarkers and class-level biomarkers was observed, which
suggested the variance between the four treatments at class-
level might be covered up after grouping different taxa to reach
a higher taxonomic level. Additionally, the number of abundant
taxa (significantly enriched at genus level) in the four treatments
was decreased for a short time but increased after day 15. NB
treatment always had more biomarkers than the other three
biochar-amended treatments, indicating that biochar addition
resulted in less differential taxa and the fluctuations in relative
abundance were time-affected, which was in coordination with
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Figure 6. LEfSe analysis shows differences in relative abundance of the four
groups atdays0, 1, 15, 40 and 90, respectively. The round dots with green, orange,
blue and red color represent genera significantly enriched in NB, RB, OB and BB
treatment, respectively (P < 0.05). Differing taxa are listed for each cladogram.

the decrease in OTU numbers and «-diversity at day 1 and the
recovery after day 15.

The relationship between bacterial community and
environmental variables

In order to reveal the response of bacterial community to
environmental variables and experimental setting conditions
including iron, six types of SCFA, three biochar types and incu-
bation time, Spearman’s correlation analysis were performed
(Fig. 7). Results showed that diverse phyla were positively or neg-
atively associated with incubation time, Fe(II), Fe(IlI) and SCFAs,
while the effect of biochar amendment on the shift of bacte-
rial community was less obvious. More specifically, at phylum
level, the relative abundance of Nitrospirae, Firmicutes and Defer-
ribacteres significantly decreased (P < 0.05) but Acidobacteria, Bac-
teroidetes, Chlorobi and Chloroflexi rose with the increase in pH
value. In addition, phyla e.g. Acidobacteria, Chloroflexi and Gemma-
timonadetes were positively correlated with Fe(I) and negatively
associated with Fe(IIl). There were only a small number of phyla
such as Caldiserica, Chlamydiae, Firmicutes and Nitrospirae that dis-
played positive correlation with almost all six types of SCFA, and
there were >10 phyla, especially Acidobacteria, Cloacimonetes and
Hydrogenedentes, that showed significantly negative association
with the accumulation of SCFAs.

Further, a correlation between taxa at genus level and envi-
ronmental variables was observed (Fig. S5, see online sup-
plementary material). The change of Fe(Il) concentration had
significantly positive correlations (P < 0.05) with genera Can-
didatus Koribacter, Candidatus_Solibacter and Syntrophorhabdus,
whereas these genera were all significantly negatively corre-
lated (P < 0.005) with Fe(Ill) concentration. In addition, the rel-
ative abundances of Bacillus, Clostridium_sensu_stricto_1, Clostrid-
ium_sensu_stricto_10, Clostridium_sensu_stricto-12 and Desulfitobac-
terium were significantly positively correlated (P < 0.05) with
Fe(Ill) but negatively correlated with Fe(II). The relative abun-
dance of Acidovorax, Caulobacter and Massilia presented a pos-
itive correlation with all six types of SCFA, while the relative
abundance of Candidatus_Solibacter, Candidatus_Koribacter, Desul-
fatiglans and Syntrophorhabdus had negative correlation with
SCFAs.

DISCUSSION

In the present study, we systematically investigated the varia-
tions of biochemical processes including pH, SCFAs as well as
Fe(Ill) reduction and the succession of bacterial community in
rice paddy soil caused by the amendment of different types of
biochar. Previous studies reported that different biochar feed-
stocks resulted in the generation of diverse functional groups
such as quinone and hydroquinone, which might affect the
redox properties of biochar (Zhao et al. 2013; Yuan et al. 2018).
The characterization results in our study also showed that three
biochars pyrolysed from different agricultural or forestry wastes
(rice straw, orange peel and bamboo powder) under the same
pyrolysis conditions harboured similar carbon and oxygen func-
tional groups but differed in their content. In addition, the differ-
ences in element content, porosity and pH value of the different
types of biochar arose mainly from the original morphology and
chemical properties of the feedstocks.

Although there were recoveries of a-diversity during the 90
days of incubation, lower richness of bacterial community and
less differential taxa in the three biochar-amended treatments
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Figure 7. Heatmap of Spearman’s correlation coefficient between environmental variables and bacterial taxa at the phylum level. Only taxa that had significant
correlations with at least five environmental variables are displayed. * Adjusted P value < 0.5; **adjusted P value < 0.05; **adjusted P value < 0.005.

in comparison to the NB control were revealed in the «-diversity
index and LEfSe results, demonstrating the transitorily nega-
tive effect of biochar on bacterial biodiversity. The significant
decrease of «-diversity after biochar addition may be caused
by the decrease in soil pH, as previous studies found that «-
diversity was significantly, positively correlated with pH (Lauber
etal. 2009; Liet al. 2018). Soil pH decreased at day 1 possibly due to
the start of anaerobic decomposition of organic matter including
acidogenesis (Liu and Zhang 2012), while pH increased after day
1 probably resulting from the dissolution of alkaline functional
groups and carbonate (Jia et al. 2018). However, the effects were
transient and «-diversity recovered afterwards with no signifi-
cant differences between biochar-amended and NB treatments
at day 90, indicating the strong adaptability of the microor-
ganism community; temporal and eventually neutral effects of
biochar amendment on bacterial diversity were also reported
previously (Cole et al. 2019). However, the effect of biochar on
microbial diversity was varied and ambiguous due to soil hetero-
geneity and biochar types. For instance, Feng et al. (2012) found
that biochar significantly increased proteobacterial abundances,
while other studies showed a negative effect of biochar that
reduced microbial activity in laboratory incubations (Kurt and
Donald 2009). Also in our study, the effect of incubation time on
the shift of bacterial community surpassed that caused by dif-
ferent biochar amendment, as NMDS results suggested time was
the overriding factor causing the grouping of different samples.
Besides, our study showed a drastic succession of bacterial taxa
happened in the early stage, and less variance of bacterial com-
munity among samples was observed in the late stage of incu-
bation, indicating the high resilience of the soil bacterial com-
munity with/without biochar amendment. A 14-month previous
study also reported a temporary change of microbial community
after biochar addition, in which biochar positively influenced the
microbial activity in the first 3 months of incubation, although
this effect disappeared in the long-term (Rutigliano et al. 2014).
The significant successional shift in the microbial community

structure over time after biochar addition may due to the char-
acter of the biochar as a microbial habitat and labile organic C
container (Farrell et al. 2013; Quilliam et al. 2013). Variation of soil
pH with the addition of biochar might also be one reason for the
shift of bacterial community as previous studies reported (Baath
and Anderson 2003; Yao et al. 2017).

The stimulating effect of biochar on Fe(Ill) reduction has
been reported in much paddy soil research (Jia et al. 2018;
Wang et al. 2017b). Biochar could serve as an electron shuttle
between Fe(Ill)-reducing bacteria and Fe(Ill) minerals in pure
culture (Kappler et al. 2014), and further studies revealed that
the organic functional groups at the surface of biochar, espe-
cially quinones, were responsible for the electron transfer to
Fe(III) in paddy soil (Xu et al. 2014b). In our study, RB treatment
showed slightly higher Fe(IIl) reduction potential than OB and
BB treatments, which might be due to a higher content of C =
O in RB. In addition, our study detected that the three biochar-
amended treatments all caused higher relative abundance of Fir-
micutes than NB, and LEfSe results showed that all three treat-
ments had significantly abundant taxa that are affiliated to phy-
lum Proteobacteria which contains many iron-oxidizing bacte-
ria (Hedrich, Schlomann and Johnson 2011). Therefore the addi-
tion of biochar to paddy soil accelerated Fe(IIl) reduction, which
might be due to its stimulating the growth of Fe(Ill)-reducing
bacteria. Furthermore, Spearman’s analysis suggested a strong
correlation between the relative abundance of typical iron(III)-
oxidizing bacteria such as Bacillus, Clostridium and Desulfitobac-
terium and Fe concentration, and similar relations were also
reported previously for a straw biochar applied to soils (Yang
et al. 2018).

As discussed before, SCFA accumulation showed strong cor-
relation with several bacterial taxa, whose relative abundances
were altered by biochar amendment. Many species of Clostridium
are able to produce organic acids (Abbad-Andaloussi et al. 1995;
Mitchell 1997; Myszka et al. 2012; Dolejs, Rebro$ and Rosenberg
2014), and their relative abundance increased in the early stage
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for all treatments in our study, correlating with the obvious accu-
mulation of SCFAs. The fast accumulation of SCFAs that resulted
from Clostridia clusters was also found in the incubation experi-
ment of paddy soil with rice straw (Rui, Peng and Lu 2009). Fast
consumption of SCFAs after day 15 was mainly due the growth
and activity of SCFA-utilizing bacteria. Butyrate-oxidizing Syn-
trophus and propionate-oxidizing Syntrophobacter (Miiller et al.
2010) were active as they showed negative correlation with SCFA
concentration, and other bacterial taxa that negatively associ-
ated with SCFA concentration such as Candidatus_Solibacter, Can-
didatus Koribacter, Defluviicoccus and Desulfatiglans could also take
up acetate or propionate (Zhilina et al. 2005; Wong and Liu 2007;
Miiller et al. 2010; Suzuki et al. 2014). In addition, Fe(IlI)-reducing
bacteria such as Bacillus and Clostridium that could utilize organic
acids as carbon sources and electron donors (Scala et al. 2006)
also showed negative association with acetate concentration.
During anaerobic incubation, Fe(Ill) reduction and SCFA con-
sumption had a similar pattern, further demonstrating the close
relationship between Fe(Ill) reduction and SCFA consumption
previously reported (He and Qu 2008; Li et al. 2011).

CONCLUSIONS

Three biochars derived from different feedstocks (rice straw,
orange peel and bamboo powder) under the same pyrolysis
process showed different micromorphology but similar organic
functional groups. The amendment of three different biochars
all transiently decreased the biodiversity of soil bacteria but had
little influence on bacterial community composition at the end
of incubation. Biochar amendment resulted in variation in the
SCFA profile and Fe(Ill) reduction in paddy soil. SCFA-producing
as well as Fe(lll)-reducing bacteria (e.g. Clostridia clusters) were
enriched at the early stage, resulting in fast accumulation of
SCFAs and Fe(Il). Increased SCFA consumption during the incu-
bation was mainly caused by the increased relative abundance
of SCFA-utilizing bacteria, such as Syntrophus, Syntrophobacter
and Desulfatiglans. To sum up, amendment of different types of
biochar led to shifts in the SCFA profile, Fe(IlI) reduction and bac-
terial biodiversity in rice paddy soil, however, non-significant
differences were observed among the biochars derived from
three different agricultural and forestry residues. This finding
extends the practical scope of those green wastes and this study
expands our knowledge and ability to assess the influence of
biochar amendment on the rice cropping ecosystem.
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