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1. This review summarizes and classifies the novel or interesting sensing strategies for 

environmental pollutants in recent years for better understanding of environmental 

sensors in view of the characteristics of environmental detection.

2. The review provides an insight into the remaining challenges and future 

perspectives in sensors for practical application.



Graphical abstract

It is the first time that sensors are systematically overviewed in environmental 

pollutants detection and the gaps between laboratory researches and practical 

applications are pointed out in this review. The recent applications of various sensors 

in the environmental detection have been summarized and highlighted.
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ABSTRACT: Sensors integrating chemical, biological, materials, electronics 

sciences, and etc., are considered as a promising technology that can bring great 

convenience and change to the world. Pollutant detection is one of the significant 

missions of sensors in the background of serious global environmental problems. As 

an accurate, selective, simple and inexpensive detection method, sensors are very 

suitable for environmental detection. Environmental samples, however, are very 

complex and unexpectedly relative to other ecosystems, which makes sensors a long 

way to go in practical application. Thus far, sensors have been developed with greater 

sensitivity, simpler and more efficient detection, better environmental adaptation, and 

etc. for pollutants detection. This review critically and comprehensively highlights the 

sensing strategies, and points the way of sensor development in environmental 

application. The sensitive and efficient, simple and miniaturized, low-cost, in-situ 

sensor strategies are comparatively reviewed in consideration of sensor development 

in pollutants detection.

Keywords: Sensors, environmental pollutant, detection, practical application, 

development
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1. Introduction

Environmental pollution is one of primarily global problems affecting human 

sustainable development. Environmental pollutant detection is an indispensable basic 

link and requisite for environmental pollution control. Judging from the development 

trend of detection technology and demand, an ideal detection method should be highly 

sensitive and accurate, simple and efficient, flexible and practical. Many efforts have 

been tried to use various analysis methods, e.g. spectrophotometry, high performance 

liquid chromatography (HPLC), gas chromatography (GC), mass spectrometry (MS) 

etc. in environmental pollutant detection. Spectrophotometry is simple but the 

detection accuracy is slightly deficient. HPLC, GC, and MS have good detection 

accuracy, but they are relatively cumbersome in operation and are not suitable for in-

situ detection [1,2]. Alternatively, sensor seems a promising method owing to its 

inherent properties, e.g. sensitivity, selectivity, simple operation, and in-situ detection 

[3,4]. Sensor, as a sensitive and fast detection tool with specific response, has sparked 

a great interest in the development of various sensing strategies for the goal of real-

time online in-situ detection, which involves chemical, biological, materials, 

electronics and other cross-disciplinary sciences. Over the past few decades, sensing 

technology has been evolving. From chemical sensor to biosensor, and from single 

detector to chip technique and high-throughput detection, electrochemical sensors, 

fluorescent sensors, colorimetric method, surface plasmon resonance (SPR) sensors, 

field-effect transistor (FET) sensors etc. successively emerged [5,6]. The labels of 

sensitivity, simple operation, low cost, miniaturization and portability etc., are 
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promoting people's understanding of sensors for environmental pollutant detection. 

Environmental pollutant detection by contrast with the detection in medical, 

food safety etc., has to face to more changeable environments, more complex 

and unpredictable composition [7,8]. Therefore, sensor techniques must rise up 

to the challenge in developing a stable, reliable strategy with certain 

environmental resistance for qualitative and quantitative analysis with high 

sensitivity and selectivity. Moreover, cost is another noteworthy concern that 

can decisively affect sensor application due to the wide, huge implementation 

scale and volume in environmental monitoring. A practical sensing strategy 

with reasonable and low cost matches the needs of environmental pollutant 

detection to promote its application. The sensitivity and accuracy are the 

ambition for sensor development and environmental pollutants sensors are no 

exception, in order to meeting a variety of low/trace requirements and 

environmental safety warning needs. Additionally, the strengthening in 

automation, miniaturization and so on, and the development in high throughput 

detection conform to the trend of future sensing. That is to say, the 

development of sensors in environmental pollutant detections should be 

comprehensively examined from the aspects of sensor detection performance, 

efficiency, simplification and practicability of sensor technology.

Indeed, as a promising and efficient detection method, many researchers have 

made great efforts to develop various sensing strategies directly or indirectly 

related to environmental analysis. However, so far as we know, it has never 
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systematically overviewed the sensing methods in environmental pollutant 

detection, which seems not clear-cut of the research direction, inevitably. 

Hence, the novel or interesting sensing strategies in recent years were collected 

and classified for a review, revolving around the practical application in 

environmental pollutant detection. According to the characteristics of 

practicality, this review consists of accuracy (especially considering the 

tremendous advances to the sensor brought by nanotechnology, detection 

strategy, etc.), simplification (involving simper device, simper operation and 

process, automation), practicability (involving miniaturization, efficient detection 

process, anti-interference performance, etc.), high throughput detection (which 

links to detection efficiency, involving multichannel detection and chips, soft

sensing and systems coordination), and outlook. In this case, the aim of this 

review is showing a cognitive system and overall framework to facilitate the 

understanding how to apply sensing strategies in environmental monitoring and their 

trends, which is beneficial to push the sensing method out of laboratory and into 

practical application in environmental monitoring as an excellent

Figure 1. The structure of the review.
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detection method (Figure 1).

2. High sensitive and accurate environmental sensors

 Sensors developed with functional nanomaterials, highly sensitive efficiency, 

stable detecting strategies and specific biological molecules that can greatly enhance 

the sensitivity and accuracy of sensors in environment pollutants detection are 

enumerated.

2.1 The application of functional materials in environmental sensors

The rapid progress of material technique in recent years has a great impact on the 

sensors, which made a continuous improvement of sensor performance for 

environment pollutants monitoring. With the application of new materials, incredible 

changes have befallen the detectability of sensors, i.e. several orders of magnitude 

improvements were obtained in sensitivity and accuracy. Some new materials, for 

example, carbon materials (e.g. graphene [9,10], carbon nanotubes [11,12]), Graphitic 

carbon nitride [13,14], nano metals and their oxide materials [15,16], conductive 

polymer materials [17,18] and mesoporous materials [19,20] have been extensively 

used in pollutant monitoring sensors with their fantastic inherent characteristics.

2.1.1 Carbon materials

The application principles of carbon materials for sensor developments are 

basically the same. And therefore, the typical and frequently used carbon materials 

(e.g. grapheme, carbon nanotubes (CNTs) and graphitic carbon nitride (g-C3N4) are 

reviewed in this section.

2.1.1.1 Graphene
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As a high electron mobility (> 15000 cm2/V·s) and low electrical resistivity (~ 1 

Ω·m), one-atom-thick, two-dimensional sp2-hybridized carbon material, graphene is 

known to significantly improve electrical conductivity of electronic components. 

While, it is worth mentioning that graphene itself possesses inertness to reaction, 

which weakens the applicability of graphene in sensor fabrication. Therefore, the 

graphene/reduced graphene oxide (rGO) is functionalized to expand its applicability 

and applied in many sensing strategies with high sensitivity. Metal nanoparticle (e.g. 

gold [21], bismuth [22,23]),  carbon nanotube [24], mesoporous material [25],

electrical conductivity of polymers (e.g. polypyrrole (PPy) [26], polyaniline (PANI) [27]

and polystyrene [28]) were used to achieve the functionalization. Generally, the 

graphene/rGO introduced in various sensing strategies can be summarized four modes 

including: (i) modifying the functionalized graphene/rGO onto an electrode for direct 

detection [22,23,29]; (ii) further assembling probe for detection after the 

functionalized graphene/rGO attaching on an electrode; (iii) modifying the non-

functionalized graphene/rGO onto an electrode for direct detection [30]; (iv)                               

further assembling probe for detection after the non-functionalized graphene/rGO 

attaching on an electrode, e.g. gold nanoparticles (AuNPs) were directly further 

electrodeposited onto the rGO electrodeposited GCE to attach the DNA probes for 

ultrasensitive detection of Hg2+ with a detection limit of 1.0×10-21 M [31]. Although 

significantly enhanced the sensitivity, the strategies of the above former two modes 

were involved in cumbersome fabrication. And the latter two, in comparison, 

simplified those tedious procedures but had a little defective in evenness of the 
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electrodeposited lays on the substrates. In general, most strategies have subjected to 

certain barriers to go out of the laboratory because of the relative cumbersome 

modifying and immobilizing process of graphene/rGO. A further challenge using the 

materials in field of environmental monitoring is the difficulty in finding a simple 

route to easily obtain the graphene/rGO functionalized sensing units, which 

determines the flexibility and operability of the sensing strategies of choice for 

application.

2.1.1.2 CNTs

CNTs, one-dimensional nanomaterials [32,33], are another variety of popular and 

important carbon material utilized in sensing strategies to strengthen the functionality 

of sensing components [34,35] for environment pollutants monitoring. Multi-wall 

carbon nanotubes (MWCNTs) considered excellent inherent conductivity and huge 

specific surface area [36,37], were used to develop a tyrosinase modified MWCNTs-

CoPc-silk fibroin film sensor for bisphenol A (BPA) detection with a detection limit 

of 3.0×10−8 M [38]. According to the number of layers of graphene sheet, the hollow 

cylindrical tubes with great aspect ratios (length/diameter) are classified into: single-

wall carbon nanotubes (SWCNTs) and MWCNTs. MWCNTs is thicker and longer 

than SWCNTs, e.g. the length of MWCNTs andSWCNTs are in the ranges from 0.3 

to 500 mm and 0.4 to 50 mm, respectively. MWCNTs possess better dispersibility 

than SWCNTs after functionlization. However, the pore volume and electric capacity 

of SWCNTs were higher than those of MWCNTs [39,40]. All the same, considering 

their substantially similar properties and contributions in sensors, we did not 
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deliberately classify the two differences between them and ignored herein [41].

Similarly to graphene, CNTs generally need to have a functionalization (e.g. 

carboxylation, amination) before further application. For example, thiophenol 

functionalized SWCNTs were self-assembled on the gold electrode surface to reduce 

interfacial capacitance of basal electrode for directly trace stripping analysis of 

mercury in various environmental samples [17]. Certainly, CNTs can also be directly 

used to fabricate sensing unit by deposition without functional group modification, e.g. 

a nanocoax sensor for volatile organic chemicals (VOCs) detection based on CNTs

[42]. While as an inert material, CNTs have good compatibility with other substances, 

especially biological molecular materials such as proteins and DNAs, which were 

combined to CNTs surfaces owing to hydrophobic interactions [43], amino-affinity

[44] and π–π stacking interactions [45], and were modified on the electrodes for high 

sensitive sensors construction. Moreover, the twisted CNTs also could provide spatial 

reaction sites to enhance reaction rate [46,47]. Not only direct improvement of the 

performance of electrodes, CNTs are also easily to upgrade by combining with other 

materials. SWCNTs were filled into the channels of the mesoporous silica to improve 

the electroconductivity of due to nano size and excellent inherent conductivity [48].

This strategy could be extended for high sensitive monitoring of environment 

pollutants. More attentions have been paid on their flexible applications in electrode 

modification, while CNTs also were appeared in expression of signal in sensing 

system. The lightweight [49] and large specific surface CNTs were used as the 

carriers of the enzyme linked signal amplification tools of the sensing strategies [50-
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52]. Additionally, SWCNTs were designed as a fluorescence quencher in a “switch-

on” DNA sensing strategy of Hg2+ detection [53]. CNTs have drawn a growing 

interest due to flexible and diverse applicability in sensing strategies. Nevertheless, it 

is noteworthy that their disorder distribution on the attachments, which leads to a 

certain of difference of reproduce in the micro-interface.

2.1.1.3 graphitic carbon nitride (g-C3N4)

  G-C3N4, as the metal-free and graphite-like polymeric carbon nitride, has attracted 

an explosion of interest in recent years owing to the unique electronic structures and 

optical properties, low cost, high stability. It has wide application in sensors. The 

easily prepared bulk g-C3N4 possessed sluggish charge transfer and poor water-

dispersibility was employed for electrochemical sensor fabrication and exhibited poor 

Hg2+ detection performance [54]. Some shortcomings should be overcome before its 

practical sensors. As a consequence, g-C3N4 nanosheets were synthesized for 

improving the surface area and decreasing the interactions among the layers of g-C3N4.

Ma et al [55] prepared the highly dispersed ultrathin g-C3N4 nanosheets with 

sonication-exfoliation under an acid condition for sensor fabrication. The surface area 

of the 2D g-C3N4 nanosheets increased 305 m2/g, comparing with the bulk g-C3N4

surface area of 9 m2/g. The edges of the ultrathin g-C3N4 nanosheets exposed more -

NH2 after ultrasonic treatment for better immobilization. Further, in order to enhance 

the electron transfer for improving the performance of sensor application, doping (e.g. 

B [56], C [57], P [58] etc.) was a widely used method to modulate the electronic 

structure of g-C3N4. Sulfur-doped g-C3N4 was modified on the fluorine-doped tin 
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oxide electrode showed a low hydrazine detection limit (0.06 μM) [59]. In addition, 

g-C3N4 compositing with nanomaterials is a common method for the physical and 

chemical properties improvements. Metal nanoparticles combined with g-C3N4

could form metal-semiconductor heterojunctions and facilitate electron transfer 

between them. Chen et al [60] constructed the electrochemiluminescence 

immunosensor based on Au NPs and g-C3N4 for carcinoembryonic antigen detection. 

The hybrid between Au NPs and g-C3N4 effectively solved the passivation problem of 

g-C3N4 in electrochemiluminescence. The 2D MoS2 composited with g-C3N4 could 

break the high electron-hole recombination efficiency barrier in photoelectrochemical 

assay owing to their ideally matched energy levels [61]. The nanocomposite was 

applied for photoelectrochemical biosensor development for 5-

hydroxymethylcytosine with a low detection limit of 2.6 pM. The application of g-

C3N4 is restricted in electrochemical sensors due to the inherently poor electrical 

conductivity. Nonetheless, benefiting from the luminescent, photoelectrochemical and 

catalytic properties, g-C3N4 becomes the excellent candidate for sensors based on 

photoelectric conversion and catalysis.

2.1.2 Nanoparticles

Given that the nanoparticle is one of the most common nanostructure and numerous 

applications of various nanoparticles in sensing strategies, herein only the major 

characteristics were summarized in applications. Nano size attributing to large 

surface-to-volume ratio, high surface reaction activity, and strong adsorption ability, 

is the most commonly feature considered in sensing strategy, which is an effective 
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way to improve detection performance of sensing strategies and never stops evolving. 

Get the truth from little things. Some typical and widely used nanoparticles are 

introduced and reviewed in the section. In the first place, AuNPs can be described as 

an all-round player for sensor constructions, which have excellent biocompatibility to 

biomolecules, stable and simple immobilization/assembly via the coupling between 

gold and sulfydryl/amino-group, and usable optical properties due to optical transition 

or SPR, as well as strong signal transmission and amplification capability. AuNPs 

provide a great multi-functionalization platform for a large amount of biological and 

organic ligands to selectively combine and detect trace analytes. AuNPs combined 

with nanomaterials in various sensing strategies, e.g. CNTs [46] electrodeposited 

graphene [31], realized heavy metals detection (Pb2+ (femtomolar level), Hg2+

(attomolar level)). From the point of view of optical properties, AuNPs were directly 

used in colorimetric or SPR strategies for specific detection of target contaminants. In 

colorimetric strategies, the color change between red and blue is related to the manner 

of AuNPs/AuNPs-biomolecular complex in dispersion or agglomeration state in 

solution. According to this feature, AuNPs were designed in various sensing strategies 

to detect pollutants such as Hg2+, Pb2+, Cr3+, phenols, dopamine, and so on [62]. In 

addition to the sensing strategies developed in conjunction with other specific 

response systems, AuNPs also can use to directly construct an arsenic sensor based on 

the minimum adsorption bond energy between AuNP and As3+ [63]. Visible light 

absorbed by AuNPs in localized SPR were used to fabricate a mercuric sensor 

because the absorbance change was associated with the combined mercury [64].
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AuNPs are suitable for sensing strategy, besides the above, the applications related to 

strengthening the signal expression will be explained in a special section later.      

Besides nano size effect, there is another interesting and unique property, i.e. 

intrinsic paramagnetism in a certain kind of magnetic nanoparticle containing iron, 

cobalt, nickel, and lanthanide [65,66]. Accordingly, an attractive, simple and 

distinctive approach of electrode modification via paramagnetism appeared, which 

can reduce extra cumbersome physical coupling and chemical modification. A carbon 

paste electrode containing an internal permanent magnet was prepared to attach the 

magnetic laccase-core-shell (Fe3O4-SiO2) nanoparticles for rapid detection of 

hydroquinone in compost extracts [67]. This sensor is easily fabricated and 

regenerated due to magnetic force fixing. Another very interesting application is that a 

paramagnetic relaxation based sensor for selective dopamine detection according to 

its influence on transverse relaxation time of water protons in NMR [68]. Anyhow, 

magnetism is a special tool that can have a field day in sensing strategies and bring 

surprises.

Moreover, a kind of nanoparticle, quantum dots (QDs), as important fluorescent 

probes for biosensing also has received considerable attention recently. QDs are 

ordinarily some species of metal nanoparticles of IIB-VIA or ШA-VA compound 

semiconductors e.g. CdSe, ZnSe, CdTe, InP, etc., as well as some non-toxic 

nanoparticles such as carbon dots (CDs). Compared to commonly organic dyes and 

fluorescent proteins, QDs possess particularly optical and electronic properties 

including size-tunable light emission, resistance to photobleaching, superior signal 
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brightness and simultaneous excitation of multiple fluorescence colors. Owing to that 

the luminescence performances of QDs are liable to be adjusted though surface 

modification with some certain materials to make their electrons and holes 

combination efficiency changes, it is flexible to design QDs into various sensing 

strategies for gas, e.g. NO2, NH3 [69]. Additionally, graphene oxide QD (GOQD) was 

also used for photoluminescent detection of trace lead [70]. As a result, QDs labeled 

DNA [71], protein [72] and immunity substance [73] were used to track and detect 

analyte(s) in simple, rapid and sensitive biosensors. According to the trend of the 

photosignal, the sensing strategies based on QDs can be divided into two categories: 

Figure 2. Various sensing strategies based on nanoparticles involving AuNPs, QDs and magnetic 

nanoparticles as signal amplifier, biological molecular materials carrier, substrate of sensing unit.
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switching “turn-on” and “turn-off”. Indeed, CdSe-ZnS core-shell particles always are 

popular QDs. They were used to respectively construct a switching “turn-on” strategy

[74] and a switching “turn-off” strategy [75] due to the corresponding configuration 

change of sensing system for Hg2+ detection. The sensing strategies are reliable and 

flexible,but there is still a misgiving to many researchers due to the possible toxicity 

from QDs. Non-toxic CDs, nevertheless, dispel the misgiving and have more and 

more fans of late. CDs combined with GO were also employed to detect Hg2+ [76]. It 

is foreseeable that CDs would be a dazzling light to illuminate the sensing field in the 

near future. The above research works are summarized in Figure 2.

2.1.3 Conductive polymer materials 

Conductive film forming molecules materials, e.g. polythiophene (PTh), PPy and 

PANI etc., are electrically conductive organic polymers, and have been extensively 

utilized in sensing strategies due to their processability, inherent electronic, optical, and 

mechanical transduction nanometerscale conducting polymer materials for sensitivity 

enhancement, and other advantageous features including their small dimensions, high 

surface to volume ratio, and signal amplification for sensing strategies.

The most notable feature of conducting polymer materials to sensing strategies is 

the optimization capabilities of electron-conductivity of sensing units. Owing to the 

advantages of high surface to volume ratio and rapid electron transfer, 

multidimensional FeOOH nanoneedle-decorated hybrid PPy was used in a nerve gas 

agent detection to enhance sensitivity (0.1 ppb) [77]. Furthermore, conductive 

polymer materials possess superior catalytic capability, e.g. iron oxide-reduced GO 
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incorporating PANI nanofiber was modified onto GCE surface to detect hydroquinone 

with a detection limit of 3.0×10−8 M [78]. In addition, PANI also is the excellent 

material that can get along well with biomoluculers and enhance electronic signals. In 

an indirectly bleomycin (BLM) SPR biosensor, the electrical signal response changes 

reflected the existence of BLM by the induced PANI, taking advantages of the 

excellent electrical properties and enhancing electrical signals of PANI [79].

Moreover, cationic water-soluble PTh can form interpolyelectrolyte complexes by 

adopting different conformations DNA, e.g. ssDNA, dsDNA and other conformations. 

Given that on an optical strategy based on specific ssDNA functionalized PTh for 

Pb2+ detection with solution color changing from red to yellow, the micromolar

Figure 3. Applications of conductive polymer materials, e.g. PPy, PANI and PTh in sensing 

strategies. Electrode modified with PPy-COOH for nerve gas detection (Aadapted from ref. 77, 

copyright (2013) American Chemical Society); electrode was sequentially modified with 

grapheme, PANI and nanoparticles; PANI as signal indicator immobilized on DNAs; PTh 

immobilized on G-quardruplex could form interpolyelectrolyte complexes; Thereinto, strategy of 

different DNA comformotions functionalization with PTh.
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concentrations Pb2+ were identified in 5 min even with the naked eye [80]. The

above research works are summarized in Figure 3.

2.1.4 Mesoporous materials

Mesoporous material is defined as a material containing pores with diameters 

between 2 and 50 nm. Mesoporous materials fabricated from a template route have 

received worldwide interests due to their pore sizes and ordered porous structures,

which endues the material some unique properties and bring some delightful results 

with nano-size effect or quantum size effect. The materials possess high surface areas, 

tunable pore sizes, special optical features, and vast framework compositions. Those 

properties are beneficial not only to implement the functionalization of various 

chemical groups on the materials surface, but also to absorb macromolecules, 

chemical molecules, and assemble nanoscale guest materials in their uniform and 

interpenetrating tunnels. Owing to the above advantages, ordered mesoporous 

materials have been one of the most popular materials in sensing. 

Mesoporous carbon is widely used, especially in electrochemical sensing strategies 

owing to the high specific surface area and electrical conductivity (Figure 4). The 3D 

structure of mesoporous carbon was utilized to enhance the electrochemical response 

by improving the structure of the modified electrodes and facilitating charge transfer 

processes on the surface of modified electrode for a metolcarb sensor [81].

Furthermore, considering combination of properties, composite materials are 

attractive. Mesoporous carbon nitride (MCN) is one of favored composite 

materials because of its biocompatibility and conductivity. A catechol and 
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Figure 4. Mesoporous materials can be modified on the substrate for detection, biological 

molecular materials (e.g. DNAs, enzymes and immunoproteins) and fluorophores can combine on 

mesoporous materials for sensitive and specific detections, and TiO2 mesoporous-coated Love 

Wave sensor (Adapted from ref. 85, copyright (2014) Elsevier). Water samples flow into the pipes 

and go through the biofilm, mesoporous TiO2 and SiO2 composite layer.

phenol sensor based on a tyrosinase-absorbed-MCN modified electrode could 

selectively and sensitively detect with the detection limit of 10.24 nM and 15.00 nM, 

respectively [82]. A DNA sensor fabricated using MCN as a substrate for manganese 

peroxidase genes detection with a detection limit of 8.0×10-18 M [83]. While, 

mesoporous materials are ideal carriers to small organic compounds owing to 

excellent chemical, thermal and mechanical stability. Vu et al [84] designed

fluorescent films consisted of surfactant-templated mesoporous silica and a phenyl-

substituted pyrene fluorophore to detect 2, 4-dinitrotoluene (DNT). Additionally, in 
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an acoustic sensing strategy based on Love wave for cadmium detection. Mesoporous 

TiO2 coated on the SiO2 could protect and decrease corrosion and improve the 

stability and lifetime of biofilm in the love wave microtubes, the polyelectrolyte 

smoothly go through the pores of mesoporous TiO2 [85].

2.2 Highly efficient and stable detection strategy in environmental sensors

Detection process and signal expression are the two principal factors to 

detection strategy. From feasibility and accuracy point of view, an efficient and 

stable detection strategy is a guarantee of the fabrication of sensing system and 

the implementation of detecting process to avoid false positive response, as 

well as an effective way to enhance sensitivity and accuracy of sensing system. 

Despite the fact that the enormous sensing strategies are sound considering 

their construction foundations of a certain specific reactions, a few interesting 

and representative works are introduced herein.

2.2.1 Novel detection strategies

The analytes are quantitatively detected via the response signal changes originated 

from the sensing units and samples in sensing systems. No matter electrochemical, 

fluorescence, colorimetric, or other sensing strategies, they generally can be classified 

into two types: “turn-on” and “turn-off” modes according to the response signal 

changes, which attributed to the strategy of sensing construction in sensing unit and 

reaction system. The signal response intensity that is positive correlation to analyte is 

a “turn-on” mode, which is carried out in most sensing strategies, e.g. the classical 

glucose sensor. Contrarily, it is a “turn-off” mode, which usually exists in the 
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suppression sensing strategies or competitive sensing strategies, e.g. a competitive 

immunosensor or an enzyme sensor to inhibitors. Indeed, no matter “turn-on” or 

“turn-off” mode, the purpose is to obtain a high sensitivity and reliable sensing 

strategy. Therefore, to bring some inspiration, several representative and attractive 

strategies were enumerated here (Figure 5).

Currently, unless the introduction of some new and interesting design, a strategy

Figure 5. Different detection strategies for sensors, included strategy of magnetic force 

combination, expanding response area by gold nanoclusters, AuNPs wrapped in hydrogel, 

nanomaterials nanocarriers for biomolecular materials loadinge, and application strategy of 

glucose meter in pollutant detection. Adapted from ref. 93, copyright (2016) Wiley.
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That a biomolecule e.g. enzyme, immunoglobulin and DNA etc. or a functional 

chemical substance is modified on a sensing unit with the help of nanomaterials or 

other materials to improve the sensitivity for a specific detection has been turned into 

a routine way. Undoubtedly, magnetism, as mentioned above, is an interesting 

property, which can make an easier assembly of a sensor by virtue of the 

paramagnetic materials, and reduce the energy barrier producing from too many 

modifiers, such as L-cysteine, nafion, chitosan and ferrocene, etc. The paramagnetic 

nanomaterials loading laccase could directly coat on carbon paste electrode via 

magnetic force for hydroquinone detection [67]. Similarly, a remarkable three-

dimensional nano-configuration also could spark an amazing result owing to 

providing a spatial reaction field to enhance the reaction efficiency, because it

provided more binding sites in electrode surface microenvironment than other 

dimensions, and directly promoted sensing sensitivity, e.g. 3D gold nanoclusters were 

electrodeposited on electrode to assemble mercury-specific oligonucleotides for trace 

mercury detection [86]. In addition, a triboelectric nanogeneratorsensor based on the 

different triboelectric polarity of AuNPs covered by polydimethylsiloxane and 3-

mercaptopropionic acid was fabricated for Hg2+ detection [87]. As for colorimetric 

strategies, the working principle based on the color difference of different distribution 

of AuNPs or other colorimetric indicators is frequently used at present. It is a simple 

and intuitive qualitative detection method but limited to semi-quantitation. However,

in recent years, the visual distance-based detection technology based on volumetric 

bar chart chip (V-Chip) is expected to solve the problem of quantitative detection by 
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translating the target recognition to visual length signal. Au@PtNPs or AuNPs 

wrapped in a hydrogel would be released in the presence of specific targets, e.g. Pb2+,

UO2
2+, and cocaine etc. for catalyzing H2O2 to generate O2, which pushed the ink bar 

moving in the V-Chip. The moving distance of ink bar visually quantified the target 

concentration  [88-90]. Moreover, carrier nanomaterials e.g. CNTs, AuNPs loaded a 

large number of signal molecules such as enzyme, electrical activity indicator are 

applied in the conventional sensing strategies to significantly strengthen the 

expression of the response signal, which would further introduce in the following 

section.

Besides that, some nanomaterial-independent strategies have been reported, 

such as a strategy based on aldehyde functionalization universally rapid 

captured amino group-containing substance in environment sample via Schiff 

base reaction, followed by a specific identification of target pollutant using its 

antibody labeled a signal indicator [91]. Additionally, the simple strategy for 

heavy metal recognition based on the change of DNA conformation between 

ssDNA and dsDNA is attractive. The current response of Hg2+ reflected the 

structure changes between ssDNA and dsDNA, and the corresponding distance 

between ferrocene anchored on T-rich ssDNAs and electrode surface [92].

Nevertheless, it is bright to put new applications into old methods. When a 

conventional glucose meter for blood glucose testing is linked to the detection 

of other substances with a general method, it becomes an ingenious transform 

and a direct use of more than 30 years of scientific research and engineering to 
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glucose meter. The functional DNAs for heavy metal or organic compound 

were modified with an invertase. In the presence of the targets, the DNA 

fragment containing invertase would separate from the primary DNAs system 

to hydrolyze starch into glucose for quantitative glucose meter analysis [93-96].

The multifarious strategies are constantly evolving based on the previous works 

and emerging new technologies and ideas to match a higher detection standard. 

However, complexity of environmental samples, cost-effectiveness, 

practicability, and so on still need to concern and to find a smooth road to be 

commercialized and widely used.

2.2.2 Signal indicator and amplification

The choice of signal indicator and the related amplification strategy not only shows 

the sensor type, but also affects the response signals. The signal indicator can be 

generally divided into two categories: optical and electrochemical indicator. The 

former usually contains fluorescent indicator such as fluorescein isothiocyanate (FITC)

[97], quantum dots [98] etc. or colorimetric indicator such as AuNP solution [99], a 

prussian blue colored starch-iodine solution [100] etc. And the latter involves some 

enzymes e.g. glucose oxidase (GOD) [101], HRP [83], acetylcholinesterase (AChE)

[102], laccase [67] etc. and electroactive species, e.g. ferrocene [103], potassium 

ferricyanide [104], methylene blue (MB) [31], gentian violet [105], thionine [106] and 

toluidine blue [107] etc (Figure 6). Signal amplification strategy can improve the 

detection sensitivity to a certain extend. It is reported ca. 30% detection efficiency 

was improved with the signal amplification by comparing the electrochemical sensing
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Figure 6. Various signal amplifier strategies involving different actions of nanomaterials, 

fluorescence enhancement (QD enhancement, liposome amplification), DNA recycling reaction, 

and proteins binding (various activities and antibodies).

strategy strategies with/without signal amplification using four kinds of functional 

electrodes [108]. Using nano-carrier is a vital strategy of signal amplification in 

sensors. A kind of excellent signal molecule carrier, nano-carbon carriers e.g. the 

aforementioned CNTs carriers [51,52] and ordered mesoporous carbon [109] emerged 

in some sensing design with significant enhancement in detection accuracy by 

strengthening the signal response. Another efficient carrier, AuNPs, not only load 
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more signal labelled QDs [110], DNAs [111] and MB labelled ssDNA [31], but also 

have their own signal enhancement capability. Besides, biomolecules such as 

liposome, DNAzyme etc. were also took advantage in the relevant fields. Zhang et al

[112] embedded FITC in picloram-antibody labeled liposomes to detect the chlorinated 

herbicide in wastewater samples with the detection performance improved by several 

orders of magnitude. Xu et al [113] utilized the Pb2+ triggered exonuclease aided 

DNA recycling system to amplify the fluorescence signal. Moreover, DNAzymes

were designed in a molecular beacon as a signal amplifier of Pb2+ fluorescence sensor

[114]. Additionally, the ascorbate peroxidase 2/antibody-binding domain fusion 

protein possessing both peroxidase activity and antibody binding capability was 

utilized to a tyramide signal amplification assay [115].

2.3 The application of specific biological molecules in environmental sensors

Biomolecular materials also have been applied as sensing unit in lots of sensing 

strategies according to their inherent properties e.g. specificity, rapid response. 

Specific biomolecules (e.g. enzyme [116], immunoglobulin [117] and DNA [118] etc.) 

are a vital part of biosensing systems for specific recognition and selectivity 

improving of pollutant detection. The specific responses between the biomolecules 

and the targets are sensitive, efficient and stable, which are the powerful tool for a 

bio-sensing strategy construction (Figure 7). Because of the redox, some common 

enzymes are designed in various sensing strategies for rapid and easy detection due to 

the direct and reflect the target concentration. Currently, aptamer is a piece of DNA or 
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Figure 7. Sensors based on different specific biological molecules including DNA (double helix, 

G-quadruplex, double strand breaking at special nucleotide sites, mispairing double helix, and 

loops), enzyme, and immunoglobulin (reaction between antigen and antibody, or signal 

amplifying of immunoglobulins combined with nanomaterials and proteins).

RNA sequence that binds to a specific target molecule, screening through exponential 

enrichment systematic evolution of ligands technology (systematic evolution of 

reaction between the enzymes and the targets e.g. GOD to glucose [119], AChE to 

organic phosphorus pesticide [120,121], HRP to hydrogen peroxide [122] or

phenylhydrazine [123], laccase to phenols or anilines [67], etc. Due to the specific 

immune reaction between antigen and antibody, a variety of immunoglobulins were 
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cultured and used in the immunosensors [99,124,125]. To DNA, the completely 

complementary DNA probe with the certain conserved sequence was used to detect 

the conserved sequence of biological target ligands by exponcntial enrichment, 

SELEX) from a nucleic acid molecule library, and is attracting more and more 

attentions. The aptamers e.g. containing the sequences that are capable of forming T-

Hg2+-T mispairing, or Pb2+-induced allosteric G-quadruplex, or other specific chemical 

binding structures for sensing detection of heavy metal ions (Hg2+, Pb2+, UO2
2+, As3+, etc.) 

or POPs and other organic compounds (polychlorinated biphenyls [126], estradiol [127]

and ethynylestradiol [128], cocaine [129], etc.) that are difficult/cumbersome to be 

detected by the conventional means. For instance, T-Hg2+-T mispairing aptamer-

target identification was designed in sensing strategies for Hg2+ detection, and the 

detection limit reached attomolar concentration31, even zeptomolar concentration

[130]. 8-17 DNAzyme was designed in a DNA sensor to have a specific catalytic 

hydrolysis for Pb2+ detection [109], and 39E DNAzyme was applied in UO2
2+

detection [131]. The specific G-quadruplex combining a microfluidic chip was 

developed for arsenic detection [132]. Additionally, the biomolecular materials e.g. 

chitosan [133], avidin-biotin [134], protein [135], DNA [136] etc. as carrier or 

medium are extended to other sensing strategies. Owing to the film-forming ability, 

chitosan is used to wrap or immobilize other functional materials for the fabrication of 

the sensing units. Avidin-biotin is a common binding system which is capable of 

assisting the sensing strategies, especially in immune-sensing, enzyme labelling 

system. Similarly, more and more reports of macromolecular protein or DNA served 
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as a carrier to load other molecules for further sensing response have appeared. It is 

not hard to image that biomolecular materials are capable of making the sensors 

becoming a super tool with a full considering the efficient biochemical reaction 

capability and without a worry about the life of biological activity or spontaneous 

regeneration.

3. Simplification of sensors for environmental pollutions detection

It is an obviously easy choice between simple and cumbersome and complex 

strategies, especially at a better/similar detection level. The evolving sensing 

strategies have tended to be a simpler and more automatic pattern. Great efforts 

have been paid to ripen the available techniques for utility. Take, for example, 

electrochemical detection systems are ongoingly improving along with the 

development of miniaturization, operation and detecting strategies 

simplification, and are becoming a potential alternative for environmental 

monitoring attributing to portable enabling on-site analysis and providing 

convenient, real-time feedback information in the presence of pollutants [137-

139]. Obviously, these devices offer superior tunability, portability and ability 

to directly transduce binding events without tedious and expensive labelling 

procedures.

3.1 Simple device 

Simpler device brings sensing systems more accessible to a wider audience. So far, 

the portable sensor is of a most popular style owing to facility, accuracy and easy 

operation for non-professionals in in vitro and on-site detection, e.g. the pocket-sized 
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personal glucose meter, a commercialized sensing device has been widely accepted 

for measuring blood sugar. And the device has been further used for detections of 

uranium [94], melamine [140], cocaine [141], etc. The sensing strategy was based on 

the target-induced release of invertase from a functional-DNA-invertase conjugate. 

This strategy makes full use the proven performance of glucose meter to avoid 

changing the design and manufacturing process of detecting device, and also can be 

extended to other hazardous substances by the substitution of different ligands for 

environmental monitoring. Certainly, other novel devices were explored as well. As 

the aforementioned visual microfluidic sensing device based on a V-Chip and a uranyl 

ion responsive hydrogel was simple and portable for UO2
2+ detection [94]. As another 

example mentioned above, the small Love wave sensor was developed for 

simultaneous metal ions, pH, conductivity, color, turbidity and free and total chlorine 

detections in-piped water quality continuous monitor [85]. In addition, with the 

integration of the sensing concept, microbial fuel cells (MFC) also can become a 

sensing device for environmental monitoring. Modin et al [142] developed a MFC 

strategy for simple and convenient monitoring of biochemical oxygen demand (BOD). 

Similarly, a sensing strategy on the basis of the microbial desalination cell was 

developed for volatile fatty acid monitoring [143]. Furthermore, a small ordered 

mersopous tungsten oxides-coated sensing device was used in H2S detection with 

excellent response at low concentration (0.25 ppm) and reversibility with fast 

response (2 s) and recovery (38 s) [144]. Additionally, with the development of chip 

technology, the smaller and portable devices are developed in sensing strategies, 
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which will be further described later. Pursuing the small portable detection devices, 

nevertheless, often has to sacrifice a certain sensitivity, whereby the balance of these 

two is an important future focus. Even so, there is still a long way to go before 

implementing a comprehensive application, which rests with breakthrough 

technologies of the device simplification.

3.2 Simpler operation and process 

Simple operation and process is another welcome means that is facilitated to get a 

stable detecting strategy and improve the detection efficiency. Colorimetry is a 

convenient and intuitive visual method in detecting strategies for pollutants estimation. 

For example a colorimetric strategy of H2S, alkaline bismuth hydroxide Bi(OH)3 or its 

derivatives were coated on a wet Amplitude Prozorb, and quickly reacted with H2S in 

nitrogen gas to form water and colored sulfide with Bi (III) [145]. Impersonally, there 

is a certain restriction to apply colorimetry since its semiquantitative analysis. At 

present, however, translating target recognition to visual length signal e.g. V-Chip 

provided an option for the quantitative analysis of colorimetry [89,90].

In other detecting system, many attempts have been used to simplify the 

detection process due to costs cutting and the general behavior. Zhang et al [86]

adopted an anionic intercalator, disodium-anthraquinone-2,6-disulfonate, as the 

electrochemical indicator in a mercuric sensor to simplify detection operation. 

Electrostatic adsorption can be effectively avoided between DNA and the 

anionic intercalator, therefore, it is possible to reduce the experimental steps 

(washing, adjusting ion concentrations etc.) and the false positive signal 
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response to be taken into account using cationic intercalators. Similarly, in 

another sensing strategy [146], DNA adsorbent and fluorescence quencher were 

acted by GO in the initial state. When meeting Hg2+, the adsorbed DNAs were 

released from GO by the triggered hybridization chain reactions and the 

detectable fluorescence was recovered. Despite the progress, these strategies 

need to further simplify and improve to meet the application in future.

3.3 High automation 

The applications of automatic devices have been found in diverse areas, such as 

manufacture, food and textile industry, which can cut down the excessive human 

labor and restrict the exposure of employees to hazardous conditions. With 

incorporating of the automatic devices for environment pollutants monitoring, sensing 

strategies become more efficient, owing to saving the costs and labors, and decreasing 

the error of manual operation. Certainly, it is necessary to use automatic devices in 

some operations, especially involving in a toxic work environment. In short, 

automation makes detection easier. 

As an attempt, the automatic sensing device based on a robotics-assisted mass 

spectrometry was constructed. The device involved the custom-written programs in C 

language, a robotic arm for delivering sample vials to the laboratory, and some 

auxiliary devices e.g. multi-relay board, photo-interrupters, gyroscopes, infrared 

sensors, force sensors, etc. which promoted and protected the analysis process to 

automate the determination [147]. The automatic devices also can be incorporated in 

some sensing systems to enhance working efficiency for water quality monitoring. A 
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syringe pump incorporated a miniature porous aluminum oxide chip to construct a 

bacterial cell sensor for the online monitoring of water quality [148]. With the help of 

the syringe pump, the water samples controllably flowed through the chip at all times, 

and realized the detection. For the same purpose, a cell phone connected with a paper 

sensing for water quality test, which was proposed and the results could transmit to 

website and somewhere else [149]. While, as another way to boost the automatic 

sensing, an optical barcode system based on the photoluminescence (PL) of 

nanoporous anodic alumina (NAA) in the UV-visible range was used in a smart 

enzymatic sensor. The NAA geometry (i.e., the pore length and its diameter) by virtue 

of its PL spectrum contributed to the identifiability of the barcode, which opened a 

new window toward automatic, accurate and fast measurements of enzyme levels, and 

could extend to environmental monitoring [150]. Additionally, to reduce labor and 

improve efficiency, an automatic sensing system combining wireless technique was 

developed for soil monitoring involving soil moisture, temperature, humidity, 

pressure, molecular analysis for better crop growth, and tracking of monitoring fields 

in daily life [151]. Although the current level of automation is not very high, 

predictably, with the unceasing improvement of automation technology, more and 

more new highly automated sensing strategies will continue to be developed in future.

4. Practicability of sensors for environmental pollutants detection

The ultimate aim of the development of the sensing strategies is to achieve a 

convenient detection of real samples. In case the sensing devices can replace 

the traditional detection methods involving expensive and sophisticated 
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instrumentations and/or complicated sample preparation processes, such as 

flame atomic absorption spectrum (AAS), spectrophotometer and 

chromatography etc. would save the economic and labor costs largely. 

Nowadays, continual progresses have been made in the miniaturization, time-

effectiveness, simplification operation, strong anti-interference performance, 

low costs, and in-site detecting etc. of the sensing strategies, which lead them 

closer to the final destination.

4.1 Miniaturization

The miniaturized sensing device would greatly facilitate the application of the 

sensors, and achieve a rapid detection with accuracy, which is promising for on-site 

detection. Microelectrode, as a branch of the miniaturization of the sensor, has 

developed for many years (Figure 8). Microelectrodes based on carbon nanomaterials

have exhibited amazing detection performance, e.g., a microelectrode array based on 

carbon nanomaterials for glucose detection [152]. The still developing microelectrode 

array, predictably, is capable of detecting in site complicated real water samples. 

Similarly, microelectrode arrays were also in positive to detect indoor air pollutants

[153]. A self-oriented synthesized MWCNTs network presented good performance in 

formaldehyde, ammonia, and toluene vapors detection [154]. Besides, TiO2, gold, 

silver, platinum, and so on nanomaterials can be utilized in microelectrodes 

fabrication as well, e.g. the microelectrode arrays based on TiO2 were obtained 

Another kind of microelectrode such as the interdigitated through photolithography 

and photocatalytic deposition [155]. MoS2, as the typical 2D transition-metal
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Figure 8. Different miniaturization sensors. Adapted from ref. 152, 157, copyright (2014) 

American Chemical Society; adapted from ref. 160, copyright (2015) American Chemical Society; 

adapted from ref. 166, copyright (2014) Elsevier.

dichalcogenides, has been widely used for gas sensors [156]. microelectrode array 

modified with MoS2 film and different conjugated thiolated ligands for establishing a 

definitive library of VOCs [157]. The small device is potable and suitable for indoor 

detection of various VOCs. Similarly, a interdigitated microelectrode arrays by 

modifying with high-aspect ratio 3D carbon pillars was constructed for 

electrochemical detection [158]. Additionally, screen-print microelectrode also 

attracts more and more concern. In order to improve the sensitivity of screen-print 
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diamond microelectrode, the polyester resin binder/boron-doped diamond powder 

ratios were adjusted [159].

Likewise, with the development of micro-fabrication technology, the improvements 

of other devices promote the development of sensing miniaturization. A micro gas 

sensing device with diameter of 9 mm consisted of a micro heater modified with 

Pd/SnO2 mesoporous film (area: ϕ 150 μm) for VOCs detection. With the heating of 

the micro heater, VOCs molecules could deeply diffuse into the mesoporous film and 

produce the detectable response signals [160]. The potable micro sensing device is 

promising for gas monitoring. The same to detect VOCs, a small liquid sensor was 

fabricated by a polymer-covered graphene micro-tube piping structure with a cross-

linked and interconnected channel network [161]. The sensor presented excellent 

detectability owing to the strain sensitive property of the resistivity of the 3D hollow 

micro-tubing. Naturally the miniaturized sensing devices were applied in other 

substances detecting such as pH and protein [162]. In addition, due to the amenability 

to miniaturization, the introducing of microfluidic contributed to less sample volumes 

with high sensitivity for pollutant detection [70]. Tahirbegi et al [163] manufactured a 

glass microfluidic device for indirect pesticide detection via the 

metabolism/photosynthesis of algae under the action of pesticides. The small device 

could monitor the dynamical concentration of various pesticides rapidly. The 

microfluidic device was employed with a solid-phase extraction chamber and a 

peristaltic pneumatic micropump to preconcentrate Pb2+ in samples for sensitive 

detection [70]. Similarly, a microfluidic platform was developed via a competitive 
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magneto-enzyme immunoassay on the boron-doped diamond electrodes modified 

with platinum nanoparticles (PtNPs) to detect pesticide [164]. Obviously, although is 

still subject to certain technical restrictions at present, the miniaturized sensing device 

is improving the comprehensive performance of the sensors. It is believed that it 

would bring a wider application of the sensing devices with the developments of 

various miniaturization strategies.

4.2 Fast preparation and maintaining bioactivity

Reducing the time and labor costs in sensor preparation is another path to improve 

the practicability of sensing strategies. Simplifying the assembly process of a sensor, 

particularly with regard to one involving biocomponent such as the immobilization 

steps of biomolecules on electrodes, the binding between thiol and gold is convenient. 

As above mentioned that the thiol-modified DNA direct assembled on the Au 

electrode or AuNPs modified electrodes keeping the bioactivity, and then performed 

the relatively specific detections combining the different detection modes such as 

electrochemisty [109,165], colorimetry [166,167], fluorescence [168,169], surface-

enhanced Raman scattering (SERS) etc [170,171] Another chemical crosslinking by 

Schiff base reaction, which is based on the reaction of amine with ketone or aldehyde, 

or other chemicals containing carboxyl group also is a feasible route for fast and easy 

binding of chemical or biological substance onto the sensing unit. For uranyl cations 

analysis, Schiff base reaction between o-methoxyphenyl methyl ketone and 2-

aminothiophenol was utilized [172]. Likewise, according to Schiff base reaction 

between aldehydes and thiosemicarbazone, thiosemicarbazone was adopted in a 
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fluorescence sensing strategy for Hg2+ detection [173]. Roy et al [174] also took 

advantage of the reaction to immobilize the amino modified DNA on the carboxyl-

polyethylene glycol functionalized glass platform for rapid detection. Furthermore, it 

is easy to perceive that carbon materials (e.g. CNTs, graphene and mesoporous carbon) 

are popular with the sensors especially the biosensors in recent years, because they are 

readily available and functionalized, which are conducive to fast preparation of 

sensors. Meanwhile, as an inert material, they exhibit good biological affinity and 

maintain the bioactivity of biomolecules. Accordingly, DNA directly coated on the 

surface of carboxyl group functionalized SWCNTs or GO rich in hydroxyl and 

carboxyl groups to save preparation time and maintain the bioactivity of DNA

[146,175]. Similarly to enzymes, via the chemical groups on the nitrogen-doped 

carbon spheres (N-HMCS), also were immobilized easily on the N-HMCS modified 

GCE [176]. Certainly, some modifications or immobilizations use electronic effect 

such as conjugated effect, electrostatic interaction, etc. Conjugate assembly is an 

effective strategy in sensing fabrication, including π-π conjucate, Au-S etc (Figure 9).

For example, conjugated polymers were modified on the surface of sensing units to 

further assemble other chemical or biological molecules based on conjugated effect. 

And enzymes/immunoglobulins to GOs/CNTs, thiol modified DNA to AuNPs also 

belong to this category [177-179]. In order to improve sensing fabrication and 

stability, it is taken full advantage of between the fixed target components in sensing 

strategies. Sukumaran et al [180] successively modified nitrogen doped graphene,
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Figure 9. Fast preparation and maintaining bioactivity via chemical crosslinking and electronic 

effects in sensor fabrications

ionic liquid and DNA via identically electrostatic adsorption onto the electrode 

surface. They are able to complete the quick assembly of sensing units and 

especially do not affect the activity of biocomponents. Besides, due to the 

natural advantage in biocompatibility, the above mentioned biomolecular 

materials e.g. DNA [165,181], protein [182,183] etc. as a medium, were used to 

maintain the good performance for a biosensing system. Taking into account 

the strong specificity and catalytic ability of the biochemical effects, once the 

bottleneck of life of biological activity or spontaneous regeneration is broken, 

biosensing strategies would rapidly grow up in the environment, medical, food 

security and other fields owning to their efficiency and accuracy detection.

4.3 Efficient detection process

The efficiency of detection process involves two aspects: response speed and 

reliability of detection process. For detection purposes, a rapid response is of a 
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crucial indicator belonging to a category of practicability, which can increase 

detecting efficiency and reduces the possibility of extra signal interference (Figure 

10). An extremely simple biological colorimetric strategy for H2S detection is 

impressive [184]. AuNPs was introduced into the Tris buffer solution contanning 

Tween 80 and H2S for reaction of 1 min at room temperature, followed by stabilized 

with the additional NaCl for 7 min. The mixture maintained red in the present of 

H2S, otherwise, aggregated and turned into blue. Whilst the rapidly biological 

sensors are also invented. For instance, pesticide analysis is usually complicated 

by high-performance liquid chromatography (HPLC), gas chromatograph (GC) and 

gas chromatography-mass spectrometer (GC-MS) etc., even the efficiency is 

improved by enzyme-linked immunosorbent assay (ELISA), immunosensor, but it's 

still a little time-consuming in term of immune reaction process. The enzymatic 

Figure 10. Efficient detection involving fast responses and reliable detection
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sensor, however, can further shorten the time-cost [69,82]. Alternatively, a simple 

enzymatic sensor was developed to rapidly detect fenoxycarb pesticide in river water

[185]. The fluorescence of nitrogen doped graphene QDs was quenched when mixed 

with AChE and its substrate for 5 min, nevertheless, would restore in the presence of 

fenoxycarb, the inhibitor of AChE, after 15 min reaction. From this it appears that the 

efficiency for pesticide analysis becomes more acceptable due to the time needed 

greatly reduced, not to mention the enzyme sensors for phenols and other compounds 

detection within 1 minutes [67,82,186]. Similarly, a rational detection process is of a 

reliable guarantee to obtain an accurate response, which can help promoting the 

application of sensing strategies. An accurate, high signal-to-noise ratio 

immunosensor was fabricated based on the specific immune response and ingenious 

designed tyrosinase(Tyr)-responsive nonenzymatic redox cycling [187]. In the 

nonenzymatic redox cycling, NADH could reduce highly electroactive catechol 

coming from the transformation of poorly electroactive phenol by Tyr, for response 

amplification. The mentioned above strategies devoted reliable detection to the sensor. 

In addition, line DNA probe array is another effective detection strategy for accuracy 

and specificity chasing. The nanostructured microelectrode was decorated with DNA 

clutch probes for detection based on signal “switch off-on” strategy [188]. The 

disparate DNAs could hybridize with their respective complementary DNAs, and 

precisely separated and detected. Because the changing of electrochemical signal 

quantitatively reflects the detecting targets, the signal “switch off-on” strategy sparks 
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an amazing interest in sensing development. Interestingly, a “switch off-on” strategy 

attracted our attention.

4.4 Anti-interference performance

The components of environmental samples are of complexity and uncertainty, 

therefore, the anti-interference ability, i.e. environmental suitability of a detecting 

method reflects its applicability, which is an important indicator. A significant feature 

of sensing strategies is that they possess a certain ability of anti-interference. 

Selectivity can be considered as a reflection of anti-interference. Sensors, especially 

biosensors have high selectivity against interfering substances in samples. A stable 

electrochemical sensor was constructed with specific DNA-based conductive carbon 

hybridized TiO2 nanotube arrays for Pb2+ detection. The sensor has excellent stability, 

wide pH adaption from 4 to 8, and selectivity in several divalent metal ions solution 

such as Cd2+, Cu2+, Zn2+, Ni2+, Ca2+, Mg2+, Fe2+, Co2+, Ba2+ and Hg2+ [189]. An 

aptamer-based fluorescence biosensor showed an outstanding anti-interference 

performance toward 17β-estradiol based on that the aptamer high affinity and 

specificity for the target with much lower signal for other endocrine disrupting 

compounds and chemicals [190]. As shown in a Pb2+ sensing strategy [191],

DNAzyme also presented good selectivity and flexibility. Certainly, the pH condition 

of samples is an essential factor for detection and analysis. The adaptive pH range of a 

lable-free FET biosensor based on MoS2 was 3 to 9 [162]. Similarly, a mercuric 

sensor based on 3D Au nano-cluster and anionic intercalator presented an attractive 

resistance to pH changes, especially, the current responses were basically same and 
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reached maximum in the pH range 6.0 to 7.8, which just fitted to common river water 

(pH=6.0 to 6.9) and municipal wastewater (pH=6.5 to 7.5) [86]. Certainly, the 

feasibility of the sensing strategies with a certain environmental suitability will be 

obviously enhanced.

4.5 Low cost 

Not only the aforementioned points, there also is a very practical factor, i.e. cost 

should be considered in the application of sensing strategies. In a sense, low cost is of 

an important prerequisite to promote their applications. In general, inexpensive 

materials taken in fabrication sensing can cut down the cost inevitably. The carbon 

materialsare relatively inexpensive, and have been widely used for sensing fabrication. 

A sensor developed with cross-reactive array of polycyclic aromatic hydrocarbons 

(PAHs) and SWCNT bilayers could detect polar and nonpolar VOCs with economical 

cost and effective accuracy [192]. Likewise, SiO2 also is a cheap material and inspires 

more sensing constructions. For example, low-cost silole-infiltrated SiO2 inverse opal 

photonic crystal was synthesized and immersed in miscellaneous organic vapors for 

detection [193]. Moreover, cutting down the consumption of reagents is another 

effective method for reducing cost. As an attempt, a microfluidic sensor was designed 

for the manipulation in small volumes and less reagent required [194]. Additionally, 

from the cost point of view, extending lifetime of sensor is a reliable way as well. In 

an impressive case, a synthesized stable polymer, poly(m-phenylenediamine-co-2-

hydroxy-5-sulfonic aniline), modified electrode could use for Pb2+ detection with a 

long lifetime of up to 5 months [195]. Another way to extend sensor lifetime is 
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providing effective regeneration. For instance, Nöll et al [196] fabricated a reusable 

fluorescence sensing strategy based on molecular beacons. To regenerate the sensor 

after each detection process, heating treatment at 90oC or rinsing with urea solution 

and water could recover the initial form of molecular beacons for next utilization. To 

a large degree, reusable sensing strategies can cut the cost down deeply.

4.6 In-situ detection 

Compared with the traditional detection methods e.g. HPLC, GC/GC-MS, AAS, etc. 

for pollutant analysis, sensing strategies have a significant advantage, which are 

suitable for in situ detection due to their portability and easy operation. A sensing 

strategy combining a portable pressure meter was applied to in situ detection [197].

Likewise, the aforementioned sensing strategies combining glucose meter [94] also

take advantage and extend the function of such commercial portable devices. In 

addition, other portable sensing strategies have also been developed for in situ 

detection, e.g. thermotolerant (faecal) coliforms was adopted constructing a portable 

tryptophan-liked fluorescence sensing for in situ monitoring faecal pollutants in 

drinking water [198]. For in situ detection of sensing strategies, there is another trend 

in term of sensing construction for worldwide water monitoring involving no reagents 

and rapidly instantaneous readouts. This feature was reflected in an autonomous 

underwater spectrophotometric sensor for in situ detection of dissolved inorganic 

carbon in seawater [199]. In addition, miniaturized sensing devices can be served to 

detect or possess the potential for on-site detection. The miniature organic 

electrochemical transistor sensor based on PtNPs binding on TiO2 nanotube arrays 



45

modified electrode was fabricated for on-site detection of chemical oxygen demand 

(COD) [200]. The sensor is suitable for the working in slightly polluted water, such as 

ground water and underground water. Similarly, to detect microsystins in river water, 

an optical microsensor arrays based on specific monoclonal antibody were fabricated on 

compact discs and read out the discernible response signal by a DVD drive [201]. It is 

of an interesting idea to guide building the applicably miniature, portable and easy-to-

use sensing strategy for environmental detection.

Furthermore, a comparision of typical pollutants detections with different sensors 

types, sensor units, detection ranges, limitations and times in environmental samples 

is exhibited in Table 1 and Table 2.
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5. High throughout detection for environmental pollutants detection

High throughput detection, with the ability to simultaneously detect a variety of 

samples, is of a trend of future monitoring, which shows a great advantage to improve 

detection efficiency. The sensing strategies are evolving towards this direction such as 

multichannel detection and chips, which make the sensing strategies more accessible 

to multi-target, multi-functional detection. Moreover, soft sensing, a method of 

combining sensor with software, can process the multiple data analysis, which also 

belongs to the category of high-throughput in a sense. Such sensing strategies are 

more conducive to the foreseeable transformation into commercial development for 

application in future.

5.1 Multichannel detection and chips 

The biggest advantage of multichannal sensors and chips is that they can perform 

simultaneous detection of multiple pollutants for monitoring assessment. As far as the 

detection efficiency is concerned, it is of great significance. Especially chips on the 

basis of multi-specific response system integration are a more sophisticated 

technology, which can rapidly provide more qualitative and quantitative information 

by detecting wide range of chemical species and biomolecules [202-204] (Figure 11).

In an interesting multichannel detection case, a fluorescence platform using a QD 

array functionalized with calixarene, cyclodextrin, -OH and -OMe was built to 

differentiate five explosives in wastewater, i.e. DNT, TNT, tetryl (2,4,6-

trinitrophenylmethyl nitramine), RDX, and trinitramine [205]. The explosives could be 

detected in a rapid single fluorometric test, which relied on the characteristic 
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Figure 11. Different multichannel sensors strategies for pollutants detections. Adapted from ref. 

207 and 208, Copyright (2014) American Chemical Society; Adapted from ref. 209, copyright 

(2015) The Royal Society of Chemistry; Adapted from ref. 210, copyright (2017) Elsevier.

fluorescence changes by binding differences between the cross-reactive 

functional surfaces of QD array and the explosives. Moreover, six bacteria 

biofilms could be identified by a multichannel nanosensor based on the 

fluorescence changes of AuNP-fluorescent protein conjugates, which were 

destroyed by the competitive interactions between the bacterial species and the 

cationic AuNPs, and produced instantaneously characteristic fluorescence

changes [206]. This targeting strategy was applicable to clinical visual and 
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camera-based diagnosis. In addition, a typical multichannel detection form, 

microfluidic strategy often appears in many sensing systems. For example, the 

nitrite and pH of water samples were simultaneously detected on a paper based 

microfluidic device with an Android smartphone [207]. Furthermore, 

multichannel lab-on-a-chip is one of the most recent trends in chemical and 

biological analysis [208]. Eight food samples containing Salmonella spp. were 

simultaneously rapidly detected by an eight-chamber lab-on-a-chip system with 

integrated magnetic bead-based sample preparation and loop-mediated 

isothermal amplification [209]. The sensing system was able to effectively 

detect Salmonella spp. on site within 40 min, much shorter than a few hours to 

days cost via conventional bacterial identification or molecular-based methods

detection. Likewise, a microchannel chip with 3 cm in diameter was 

constructed for four kinds of samples simultaneous detection [210]. There were 

four independent micropump connected with four inlets, where could pipe 

samples into microchambers in the chip to electrochemically identify the target 

molecules. The multichannel device and chips have been developed and made 

great progress in recent years and possess the advantages, such as speediness, 

accuration, effectivity, timesaving potability, etc. Hazen et al [211] utilized γ-

Proteobacteria 16S rRNA genes to rapidly detect various oil contaminants in 

deep sea, such as BTEX cmpounds, alkanes and PAHs, which provide timely 

and quick analysis information to assess the bioremediation for coping with the 

unexpected Deepwater Horizon blowout. Likewise seven genes modules were 
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applied for acetate, NO3-, SO4
2-, Fe2+ and U (VI) monitoring in response to 

emulsified vegetable oil amendment [212]. However, microscale analysis and 

sophisticated manipulation may be obstacles in production and popularization 

in a large scale, especially it is unignorable that a portion of devices are 

complex and expensive in fabrication, maintenance or operation. In any case, 

with technology simplifying and cost reduction, the outlook of multichannel 

and chips sensing is promising, indubitably.

5.2 Soft sensing and systems coordination

Soft sensing, briefly the combination of sensor and algorithm-based software, can 

handle and provide more data and information with the help of computers, i.e. sensors 

provide instantaneous on-site data and software makes a data analysis by the 

simulation and prediction model of the running computer programs. It is useful in data 

fusion, where measurements of different characteristics and dynamics are covered. 

Environmental information is also complex giving ample scope for soft sensing 

abilities. The electrochemical response signals corresponding to the concentration of 

hydroquinone in compost extracts were detected by a laccase sensor, and then were 

nonlinearly analyzed using backpropagation-artificial neural network model. 

Compared with the linear analysis by the biosensor, the proposed nonlinear analysis 

method exhibited a more robust detection capability for on line analysis, because 

ANN could easily simulate, analyze and solve the nonlinear, overlap and uncertain 

problems in complex systems [213]. Magnetic tube recovery ratio was measured by 

fuzzy system and neural network techniques instead of real-time control the index in 
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mineral processing [214]. The data would form fuzzy system which the modeling 

error between the real data and the fuzzy system will be compensated by a neural 

network. Group genetic case-based reasoning soft-sensing method consisting of 

genetic algorithms and group decision-making was carried out for the dissolved 

oxygen (DO) concentration monitoring in wastewater treatment process [215].

Obviously, continuous and evolutionary adaptation and optimization algorithm can 

further coordinate and improve the cooperation of each component in the systems, 

which are going to make them more intelligent and suitable for environmental 

detection and analysis. In addition, according to the concept, soft sensing and 

chemometrics have some degree of similarities in a sense. Chemometrics is a 

discipline that establishes a connection between the measured values of a chemical 

system and the state of the system by means of statistical or mathematical methods. 

Indeed there is a certain intersection between them. Chemometric techniques such as 

partial least squares, locally weighted regression and multilinear partial least squares 

regression were utilized for regression modeling prediction of biomass and substrate 

concentrations in Streptomyces coelicolor cultivation monitoring, and could predict 

the process variables on-line [216]. The soft sensing based on 2D fluorescence 

spectroscopy coupled with partial least squares regression was exploited for optical 

density, time of culture, glucose and 2-PE concentrations monitoring on line [217].

Moreover, chemometrics could be used in solid-state fermentation (SSF) monitoring, 

especially the enzyme activities in SSF were challenges [218]. In general, soft sensing 

experts at complex, large capacity of data processing and simulation, and facilitates 
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the integration of integrated monitoring platform for multiple data analysis. Moreover, 

with the development of artificial intelligence and algorithm, the auxiliary software 

and computer technology would further promote detect media to coordinate and 

optimize the detection system, which can contribute to the more powerful detection to 

meet technical requirements and future trends.

6. FUTURE OUTLOOK

At present, the sensing method is still mainly in the laboratory stage, however it has 

shown great potential in environmental pollutants detection, due to its inherent nature 

such as high sensitivity and selectivity, low cost, flexibility and portability etc. 

Meanwhile, in order to push forward its practicality, numerous researchers have 

racked their brains for the breakthrough bottlenecks in application by the inspiration 

in nanomaterials, biology, electronics, micro-nano processing and so on. In sum, the 

sensing strategies will further evolve to approach the practicality in future.

Accuacy. Although many types of sensing strategies have been developed, 

according to sensing principle, most of them are focused on the accuracy (sensitivity 

and selectivity). In term of sensitivity, improving sensing units is a currently principal 

way, and strengthening the signal response system is another effective way as well. 

Herein, the fast-developing material science becomes the basic driving force for the 

above two major ways. The novel materials (e.g. two dimensional dirac material 

represented by graphene, safe and cheap carbon materials, easily functionalized 

porous materials, and some of outstanding metal nanomaterials, organic polymer 

materials) will continue to play a pivotal role for sensing method in future. Certainly,
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materials like carbon materials with superior properties and abundant resources are 

more recommended. Additionally, the reliability of detection process is conducive to 

accuracy, which is mainly through the adoption of specific reaction system such as 

chemical/biochemical systems, and the introduction of the appropriate strategy to 

eliminate/reduce the possibility of false positive response for the selectivity. Among 

all kinds of sensors, electrochemical sensors have shown advantages in sensitivity, 

which are easier to meet the needs of identification and safety warning of low/trace-

concentration pollutants in the environment. However, blindly pursuing accuracy, it is 

inevitable to cause over-reliance and piling materials, complex construction and 

detection process, etc. issues. Alternatively, a rational approach is carried out to 

develop more efficient strategies taking into account accuracy and practicability for 

meeting the challenge of environmental monitoring.

Environmental monitoring requirements. The unpredictability and complexity 

are the intrinsic characteristics of environmental samples, which is a stumbling block 

of environmental monitoring. Therefore, to promote the application of sensing method 

in environmental monitoring, the following several aspects can be carried out.

Strengthening the selectivity and environmental adaptability. The more specific 

chemical/biochemical reaction system, or size effect and the structural 

characteristics of some materials should be used to enhance the target specific 

identification in complex environment; and make full use of the characteristics 

of the system itself to construct a sensing strategy with some auxiliary means 
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for enhancement of environmental resistance to reduce the impact of 

environmental factors on the detection.

Strengthening sensor regeneration. Most of the sensing strategies currently cannot 

reach the standard of practical application in the regeneration. Obviously, the 

practical progress also is a big step forward for the sensing method application 

in the regeneration. The sensing detection is mainly based on the contact 

response and the capture effect. The regeneration of the sensors based on 

specific contact catalysis (such as enzyme sensors and some chemical sensors) 

usually is fulfilled by the normal operating i.e. separation and cleaning. while, 

it is more complex for the sensors based on the capture effect (e.g. 

immunosensor, aptasensor) due to various types of capture with different 

known and unknown action mechanisms. Clear mechanisms are in great favors 

of the efficient regeneration, but on the whole the related mechanism research 

is not thorough enough, which is an urgent problem to be solved for the 

application of sensing method in environmental monitoring. At present, the 

design of disposable sensor or sensor for quick-replacement sensitive units is a 

substitute strategy to alleviate this problem.

Practicability. The present greatest challenge for sensing method in application 

is its practicability. It can be easily related to cost, manufacturing, operability, 

portability etc., which are the direct transition points to apply sensing 

technology to production. In fact the mentioned difficulties have been trying to 

overcome by the global researchers. It is of a crucial target to develop more 
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practical sensors like a personal glucose meter, for environmental monitoring 

having the attributes such as cost-effectiveness, simple production and 

operability, fast response, small (micro) size, and real-time in situ detection. In

terms of simplifying sensor construction, perhaps the photoelectric sensor will 

receive great attention for a period of time, because of its own response signal 

properties. In addition, the use and integration of some current commercial 

portable devices and technologies, such as personal glucose meter and mobile 

phone, to develop new sensors is also a fast and effective method.

Biosensing strategy. For biosensing strategy, there is an unavoidable problem i.e. 

the activity cycle of biological molecules, and the factors affecting biological 

activity. To facilitate the adoption of biosensing strategy in actual detection, the 

unremitting efforts of how to eliminate/reduce the influence on biological 

activity for long-term and repeated use have been making. Adding a nano-

protective cover to bioactive molecules against the interference of various 

environmental factors to enhance their service life may be a way out. Once the 

bottleneck can be broken, it will rapidly open up new avenues for the wide 

application of biosensing strategy owing to the high specificity and reaction 

efficiency of biological (molecular) system, which will be more consistent in

the development of environmental monitoring.

Intergration trends. The above aspects are mainly around the technical level of 

the current sensing method itself according to the sensing principle, which involve the 

technical parts to be desired from laboratory to practical application stage. Looking 
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ahead, it is developing towards the standardized, intelligent, integrated multi-target 

fast sensing mode and new sensing technology. Undoubtedly, building uniform 

specification and technical standards are inevitable trend and is for the sake of the 

general public, which facilitates to maximize interoperability, compatibility, 

repeatability, etc. In other respects, some sensing strategies were developed 

combining with the mathematical model and algorithm, and supplementing automated 

design and device, had exhibited a certain degree of intelligence, online analysis 

potential. Moreover, chip, multi-channel, high-throughput modes are also used in 

multi-target detection analysis for advanced and sophisticated sensing method. In 

addition, with the birth and evolution of new technology, and with the discovery and 

breakthrough of new principles and mechanism, will appear more and more 

miraculous sensing detection technology to achieve integration of detection-imaging. 
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Figure 1. The structure of the review.



Figure 2. Various sensing strategies based on nanoparticles involving AuNPs, QDs and magnetic 

nanoparticles as signal amplifier, biological molecular materials carrier, substrate of sensing unit.



Figure 3. Applications of conductive polymer materials, e.g. PPy, PANI and PTh in sensing 

strategies. Electrode modified with PPy-COOH for nerve gas detection (Aadapted from ref. 77, 

copyright (2013) American Chemical Society); electrode was sequentially modified with grapheme, 

PANI and nanoparticles; PANI as signal indicator immobilized on DNAs; PTh immobilized on G-

quardruplex could form interpolyelectrolyte complexes; Thereinto, strategy of different DNA 

comformotions functionalization with PTh.



Figure 4. Mesoporous materials can be modified on the substrate for detection, biological molecular 

materials (e.g. DNAs, enzymes and immunoproteins) and fluorophores can combine on mesoporous 

materials for sensitive and specific detections, and TiO2 mesoporous-coated Love Wave sensor 

(Adapted from ref. 85, copyright (2014) Elsevier). Water samples flow into the pipes and go through 

the biofilm, mesoporous TiO2 and SiO2 composite layer.



Figure 5. Different detection strategies for sensors, included strategy of magnetic force combination, 

expanding response area by gold nanoclusters, AuNPs wrapped in hydrogel, nanomaterials 

nanocarriers for biomolecular materials loadinge, and application strategy of glucose meter in 

pollutant detection. Adapted from ref. 93, copyright (2016) Wiley.



Figure 6. Various signal amplifier strategies involving different actions of nanomaterials, 

fluorescence enhancement (QD enhancement, liposome amplification), DNA recycling reaction, 

and proteins binding (various activities and antibodies). 



Figure 7. Sensors based on different specific biological molecules including DNA (double helix, 

G-quadruplex, double strand breaking at special nucleotide sites, mispairing double helix, and 

loops), enzyme, and immunoglobulin (reaction between antigen and antibody, or signal amplifying 

of immunoglobulins combined with nanomaterials and proteins).



Figure 8. Different miniaturization sensors. A dapted from ref. 152, 157, copyright (2014) 

American Chemical Society; adapted from ref. 160, copyright (2015) American Chemical Society; 

adapted from ref. 166, copyright (2014) Elsevier.



Figure 9. Fast preparation and maintaining bioactivity via chemical crosslinking and electronic 

effects in sensor fabrications



Figure 10. Efficient detection involving fast responses and reliable detection



Figure 11. Different multichannel sensors strategies for pollutants detections. Adapted from ref. 

207 and 208, Copyright (2014) American Chemical Society; Adapted from ref. 209, copyright (2015) 

The Royal Society of Chemistry; Adapted from ref. 210, copyright (2017) Elsevier.
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