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Compared with the transition metal induced homogeneous catalytic system, the heterogeneous catalytic
system based on transition metal-doped metal organic frameworks (MOFs) were stable for the efficient
utilization of transition metal and avoiding the metal leaching. The aim of this work is to synthesize Co-
doped MIL-53(Al) by one-step solvent thermal method and use it to activate peroxymonosulfate (PMS) to
remove tetracycline (TC) in water. The successful synthesis of Co-MIL-53(Al) samples was demonstrated
by XDR, SEM and FTIR characterizations. The 25% Co-MIL-53(Al)/PMS system showed the optimal TC
removal effect compared to the PMS alone and MIL-53(Al)/PMS system. The catalytic performances of
Co-MIL-53(Al)/PMS system in conditions of different pH, co-existing substances and water bodies were
investigated. Quenching experiment and electron paramagnetic resonance (EPR) showed that the degra-
dation mechanism by Co-MIL-53(Al) activation PMS was mainly attributed to sulfate radical (SO4

�-) and
singlet oxygen (1O2) non-radical. The degradation intermediates of TC were also identified and the pos-
sible degradation pathways were proposed. Co-MIL-53(Al) showed good activity after four cycles. These
findings demonstrated that Co-MIL-53(Al) can be a promising heterogeneous catalyst for activating PMS
to degrade TC.
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1. Introduction

In recent decades, water pollution has been an urgent and non-
negligible problem in the world [1,2]. As a new type of pollutants,
antibiotics attract extensive attention. Antibiotics have been over-
used in recent years, and the accumulation of antibiotics may lead
to a significant increase of antibiotic resistance of microorganisms.
And antibiotics may cause problems with target organisms such as
endocrine disruption, chronic toxicity in the long term [3,4]. Tetra-
cycline (TC) is one of the most widely used antibiotics with stable
structure, and it is difficult to remove by traditional biological
methods [5–7].

Advanced oxidation processes (AOPs) have a wide application
prospect because of their fast degradation rate, high oxidation effi-
ciency and effective degradation towards various pollutants in the
environment [8,9]. Recently, AOPs based on sulfate radical (SO4

�-)
receive increasing attention because of their effective degradation
towards organic compounds. The SO4

�- has a higher oxidative
potentials (2.5–3.1 V vs 1.8–2.7 V of HO�), a longer half-life (30–
40 ls vs 20 ns of HO�), and a wider range of pH (pH from 2 to 8)
than the hydroxyl radical (HO�) that plays a major role in the Fen-
ton reaction [10–12]. In general, peroxydisulfate (PDS) and perox-
ymonosulfate (PMS) are two sulfates that can be activated by
catalysts to produce SO4

�- [13]. The structures -O3SAOAOASO3
-

and OAO contained in PDS are symmetric and the OAO bond
length of PDS is 1.322 Å. However, the HO-O-SO3

- in the PMS is
asymmetric and PMS contains longer superoxide OAO bond (IO-
O = 1.326 Å). These properties make PMS easier to be activated than
PDS [14].

The transition metals activation of PMS receives a lot of atten-
tion because of its obvious advantages: low energy consumption
and easy operation [15,16]. Transition metals can activate PMS
mainly because of electron transfer. A transition metal at a low oxi-
dation valence loses an electron to a higher valence state, and this
electron is transferred to the HSO5

- in PMS to form the SO4
�-, as

shown in Eq. (1) [17]. At the same time, the formed SO4
�- can also

react with H2O or OH– to produce hydroxyl radical (HO�) that plays
a role in the catalyst/PMS system according to Eq. (2) [18].

Mnþ þ HSO�
5 ! Mðnþ1Þþ þ SO��

4 þ OH�
SO��
4 þ OH�ðH2OÞ ! SO2�

4 þ HO � ðþHþÞ
Among the transition metals, iron (Fe) [19], manganese (Mn)

[20], copper (Cu) [21] and cobalt (Co) were efficient to activate
PMS. It was worth noting that some studies showed that Co2+

owned the best activation ability [11,22]. Homogeneous Co2+/
PMS system is effective to the contaminant purification, while
the carcinogenic Co2+ brings threat to human health [23]. A series
of researches showed that introducing Co into substrates to form
heterogeneous catalysts could give play to the catalytic activity
of Co. More importantly, the Co leaching threat was greatly
reduced [24–26]. Therefore, in order to develop Co’s ability to
degrade pollutants without generation of secondary pollution, it
is important to find a suitable carrier.

Metal organic frameworks (MOFs) are a kind of hybrid materials
which are formed through connection between organic and inor-
ganic units by strong bonds. In recent years, MOFs have arisen
great interest in researchers for their superior properties: suitable
pore structure, high specific surface area, large pore size [27–31].
MOFs doped with metal were extensively studied because of their
great catalytic ability. The Cu-doped ZIF-8 synthesized by Nagarjun
et al. showed better catalytic performance than pure ZIF-8. More-
over, the catalytic performance and morphology of Cu-doped ZIF-
8 did not change significantly after two times of reusing [32].
Cao et al. added Co to UiO-66 for efficient catalytic removal of TC
and the porosity of UiO-66 provided active sites for contact
between the catalyst and TC molecules [33]. The MIL series are
one of the most widely studied types of MOFs. Researchers carried
out some adsorption and catalytic experiments about MIL-53(Al)
and found that MIL-53(Al) was of a kind of strong thermal and
chemical stability in the MIL series. Therefore, it is feasible to select
MIL-53(Al) for catalytic research.

Therefore, Co-MIL-53(Al) series with different Co contents were
synthesized by one-step solvent-thermal method and the mor-
phology, structure, porosity, chemical property were characterized.
What’s more, the removal efficiencies of TC by Co-MIL-53(Al)/PMS
system under different PMS dosage, pH values, co-existing ions and
actual wastewater were studied. For testing the stability of the cat-
alyst, cyclic experiments were carried out. Quenching experiment
and EPR test were conducted to explore the degradation mecha-
nism. This study provided a new idea about the synthesis of tran-
sition metal doped catalysts in actual wastewater treatment.
2. Experimental

2.1. Materials

Aluminium chloride hexahydrate (AlCl3�6H2O, �99.9%), Cobalt
chloride hexahydrate (CoCl2�6H2O, �99.9%), N, N-
dimethylformamide (DMF, �99.5%), 1,4-benzendicarboxylic acid
(H2BDC, �99.0%), anhydrous ethanol (�99.9%), methanol
(�99.5%), tertiary butanol (TBA, �99.9%), L-histidine (�98.0%),
humic acid (HA, �99.0%), sodium nitrate (NaNO3, �99.0%), sodium
chloride (NaCl, �99.0%) and sodium carbonate (Na2CO3, �99.0%)
were provided by Sinopharm Chemical Reagent Co.,Ltd. Tetracy-
cline (TC, �99.0%) and potassium peroxymonosulfate (PMS,
42.0%�47.0% KHSO5 basis) were acquired from Shanghai Rhawn
Technology Development Co. Ltd. All solutions in this study were
prepared by deionized water (resistivity = 18.25 MX�cm, 25 �C)
purified by Milli-Q system.

2.2. Syntheses

Preparation of MIL-53(Al): MIL-53(Al) was synthesized by
mixed solvent thermal way with some modifications referring to
the published literature [34]. 0.734 g AlCl3�6H2O was added to
11.25 mL deionized water and stirred to make solution 1. 0.77 g
H2BDC was dissolved in 33.75 mL DMF to form solution 2. Then
the mixture of solution 1 and solution 2 was stirred for 1 h under
room temperature, transferred into the 100 mL Teflon-lined steel
reactor and put in an oven statically for 1 day under the condition
of 150 �C. After the solution’s temperature in the reactor decreased
to room temperature, it was centrifuged and washed three times
using DMF and anhydrous ethanol respectively to get the white
product, MIL-53(Al). The obtained white product was placed in a
vacuum drying oven and dried at 60 �C overnight.

Preparation of Co-MIL-53(Al): To get a series of cobalt-doped
MIL-53(Al) (X Co-MIL-53(Al), X = 10%, 15%, 20%, 25% which repre-
sented the molar ratio of Co to Al), various amount of CoCl2�6H2O
was added into solution 1 to get solution 3. Then solution 3 and
2 were mixed quickly. The following procedures were the same
as synthesizing MIL-53(Al).

2.3. Instrumentation and characterization

X-ray diffraction (XRD, Bruker D8 Advance powder X-ray Cu Ka
radiation diffractometer, wavelength is 0.15406 nm), Field emis-
sion scanning electron microscopy (FE-SEM, Zeiss Sigma HD),
Fourier-transform infrared spectroscopy (FTIR, Bruker Vertex 70),
static volumetric adsorption system (QUADRASORB SI), X-ray pho-
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toelectron spectroscopy (XPS, EscaLab Xi + ) and inductively cou-
pled plasma mass spectrometry (ICP-MS, Aglient 7800).
Fig. 1. XRD patterns of MIL-53(Al), (10%, 15%, 20%, 25%) Co-MIL-53(Al).
2.4. Degradation experiments

The catalytic oxidation experiment was carried out in 250 mL
beakers containing 100 mL TC solution at a concentration of
30 mg L-1. The 20 mg sample was dispersed into TC solution for
adsorption, and the time point of adsorption equilibrium was
reached after 1 h. In general, this act is to avoid effect of the TC
adsorption by catalyst on the evaluation of actual catalytic perfor-
mance. Then 30 mg PMS was added to start catalytic degradation.
In particular, in the influence experiment of PMS addition amount,
the amounts of PMS were 10, 20, 30 and 40 mg. The degradation
process lasted 1 h under magnetic stirring. At some regular time,
sample solution was collected and UV–Vis spectrophotometer
(Shimadzu, Japan) was used to measure the TC concentration at
357 nm.
3. Results and discussion

3.1. Structure characterization

The XRD patterns of MIL-53(Al) and MIL-53(Al) doped with dif-
ferent amounts of Co were shown in Fig. 1. The crystallinity infor-
mation about as-prepared samples could be obtained. The XRD
pattern of the sample MIL-53 (Al) was consistent with that
reported by other researcher [35]. This suggested that MIL-53
(Al) was synthesized successfully in this experiment. As could be
seen from the XRD pattern, the diffraction peak (110) was shown
at 2h = 9.2�, and the diffraction peak (211) and (220) combined to
form one peak (2h = 18.2�) [34]. After Co doping into MIL-53(Al),
the characteristic diffraction peak basically did not change, indicat-
ing that the Co doping did not change the crystalline shape of MIL-
53(Al) [33]. But the peak strength of Co-MIL-53 (Al) was lower than
that of pure MIL-53 (Al), possibly because of the negative effect of
Co doping on the crystallization properties of the material. It was
worth noting that there was no peak of Co species and possibly
because the actual doping content of Co into MIL-53(Al) was very
low [33].

SEM analysis of Fig. 2(a, b) and Fig. 2(c, d) showed the morpho-
logical features of the synthesized samples. MIL-53(Al) and 25%
Co-MIL-53(Al) exhibited the similar morphology, both of which
were cubic long strips, showing that Co doping did not change
the structure of MIL-53 (Al). This conclusion also provided evi-
dence to support the XRD results. After doping Co, the average
diameter of sample was shortened by 9 nm, from 84 nm to 75 nm.

Fig. 3(a) provided such information that the FTIR spectra of MIL-
53(Al), 10% Co-MIL-53(Al), 15% Co-MIL-53(Al), 20% Co-MIL-53(Al)
and 25% Co-MIL-53(Al) were consistent. This phenomenon proved
that Co doping did not change the functional groups of the sam-
ples. This conclusion was consistent with the conclusions obtained
from XRD patterns and SEM images. There was a peak at 778 cm�1,
possibly caused by the bending vibration of CAH in the benzene
ring [34]. The peaks at 1440 cm�1 and 1582 cm�1 were attributed
to the C@C double bond vibration in the benzene ring [34]. The
symmetric and asymmetric stretching of the –COO in carboxyl
group of organic ligand H2BDC contributed the peaks of
1402 cm�1 and 1607 cm�1 [36]. There might be some adsorbed
water on the surface of samples, so the stretching vibration of –
OH in the water caused the peak at 3449 cm�1 [37].

To further explore the BET surface area, pore diameter and pore
volume of MIL-53(Al) and 25% Co-MIL-53(Al), N2 adsorption and
desorption experiment was carried out, and the obtained conclu-
sions were demonstrated in Fig. 3(b) and Table. 1. The N2 adsorp-
tion and desorption isotherms of the synthesized samples were all
type IV hysteretic loops, indicating that the samples contained
abundant micropores. The information could be obtained from
the pore diameter distribution diagram inserted in Fig. 3(b) that
the pore diameter mainly concentrated at 0–5 nm. The BET surface
area of 25% Co-MIL-53(Al) was 905.02 m2 g�1, which was lower
than that of pure MIL-53(Al) (1127.10 m2 g�1). The values of BET
surface area of both MIL-53 (Al) and 25% Co-MIL-53 (Al) were
smaller than that in the literature [38]. One possible reason was
the samples were filled with H2BDC remained. In addition, the FTIR
spectrum showed the presence of adsorbed water in the samples
and the water molecules contained in the samples also had a neg-
ative effect on BET surface area. The pore diameter and volume of
the 25% Co-MIL-53(Al) did not change significantly compared to
that of pure MIL-53(Al).

For clearly characterizing the chemical composition and valence
of synthesized 25% Co-MIL-53(Al), XPS analysis was performed. It
could be seen from survey spectrum in Fig. 4(a-d) that there were
C, O and Al elements in 25% Co-MIL-53(Al). Since the doping
amount of Co was very low, there was no obvious peak of Co ele-
ment (Fig. 4(e)). According to the result of ICP-MS analysis, in the
sample of 25% Co-MIL-53(Al), the actual amount of Co doped into
MIL-53(Al) was only 1.3 wt%. These two outcomes verified the suc-
cessful doping of Co with low content.

3.2. Catalytic performances

Before adding PMS, TC was adsorbed by samples. And after add-
ing PMS, the degradation process of TC was studied. When dis-
cussing the degradation rate of TC, the time point of adding PMS
was set to be t = 0. The degradation reaction lasted for 60 min.
Pseudo-first order kinetics based on Langmuir–Hinshelwood
model (Eq. (3)) was used to fit the TC degradation curves. The
pseudo-first-order rate constant, kobs, was obtained by linear
regression of Eq. (4), which is derived from Eq. (3) when t = 0,
C = C0:

�dC=dt ¼ kobsC

lnðCt=C0Þ ¼ �kobst

where C0 and Ct are the TC concentration when adding PMS and the
concentration at degradation time t, respectively.

3.2.1. Effect of Co doping content
The catalytic performance and corresponding kinetic behavior

based on pseudo-first-order model of Co-MIL-53(Al)/PMS system
for TC degradation were studied. The effect of Co doping content
was studied. As shown in Fig. 5(a), TC amount dropped by 26.9%



Fig. 2. SEM images of MIL-53(Al) (a, b) and 25% Co-MIL-53(Al) (c, d).

Fig. 3. FTIR spectra of MIL-53(Al) and (10%, 15%, 20%, 25%) Co-MIL-53(Al) (a) and N2 adsorption/desorption isotherms (Inserted figure was the pore diameter distribution) of
MIL-53(Al) and 25% Co-MIL-53(Al) (b).

Table 1
BET Surface area, pore diameter, pore volume of MIL-53(Al) and 25% Co-MIL-53(Al).

Samples BET surface areaa

(m2 g�1)
Pore diameterb

(nm)
Pore volumec (m3

g�1)

MIL-53(Al) 1112.71 1.63 0.64
25% Co-MIL-

53(Al)
905.02 1.64 0.56

a.Measured using N2 adsorption with the Brunauer-Emmett-Teller (BET) method.
b. Calculated by the desorption data using Barrett-Joyner-Halenda (BJH) method.
c.Total pore volume determined at P/P0 = 0.99.
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in the presence of PMS alone and the removal efficiency of TC was
about 66.0% in MIL-53(Al)/PMS system. According to the test
results of ICP-MS, the values of actual content of cobalt were
0.55 wt%, 0.79 wt%, 1.03 wt%1, .3 wt% in 10% Co-MIL-53 (Al), 15%
Co-MIL-53 (Al), 20% Co-MIL-53 (Al) and 25% Co-MIL-53 (Al).
Compared with pure MIL-53(Al), MIL-53(Al) doped with different
Co contents greatly improved the removal efficiency. The systems
of 10% Co-MIL-53(Al)/PMS, 15% Co-MIL-53(Al)/PMS, 20% Co-MIL-
53(Al)/PMS and 25% Co-MIL-53(Al)/PMS reduced the TC concentra-
tion by 83.0%, 89.8%, 92.3% and 94.0% and the kobs increased from
0.01708 min�1 to 0.03098 min�1 with the increasing Co content.
This might be because the higher the cobalt content, the more effi-
cient it was to activate PMS.

In the degradation curve of TC in 25% Co-MIL-53 (Al)/PMS sys-
tem, the removal of TC was caused by the adsorption of catalyst
and degradation of active substances produced by PMS activation
by catalyst. The adsorption of TC by catalyst might be attributed
to its large specific surface area [39]. Moreover, the catalyst
provided a site for the activation of PMS and made it easier for
the SO4

��, HO� radicals and 1O2 non-radical to interact with
adsorbed TC molecules.



Fig. 4. XPS survey spectrum (a), C 1 s scanning spectrum (b), O 1 s scanning spectrum (c), Al 2p scanning spectrum (d), Co 2p scanning spectrum (e) of 25% Co-MIL-53(Al).
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3.2.2. Effect of PMS dosage
Effect of PMS dosage on degradation effect was investigated.

When the amount of PMS varied from 10 mg to 30 mg, the removal
efficiency of TC improved continuously and the kobs also increased.
The increases in removal efficiency and speed were mainly because
of the more active substances produced (Fig. 5(c)) [40]. However,
when the amount of PMS increased to 40 mg, the removal effi-
ciency and kobs of TC decreased, which might be attributed to the
self-quenching effect of excessive free radicals [41].
3.2.3. Effect of original pH value
The degradation of TC in the catalyst/PMS system might be

affected by the original pH value of the solution according to pre-
vious report [18]. As was shown in Fig. 5(e), the 25% Co-MIL-53
(Al)/PMS system displayed high removal efficiency towards TC in
a wide pH range of 3–11. In acidic solution (pH = 3, 5), the catalyst
surface had a positive charge under the action of H+ to better
attract PMS [42]. When it came to alkaline condition, OH– pro-
moted the generation of SO4

�� and HO�, two free radicals, to degrade
TC by PMS [18].
3.2.4. Effect of co-existing ions and water bodies
To further explore the practical application of 25% Co-MIL-53

(Al), experiments were conducted in the environment of co-
existing ions and different water bodies. As was shown in Fig. S2
(a, b) and Fig. S3(a, b), in the solution containing different concen-
trations of humic acid and NO3

–, the removal efficiency and the kobs
were almost unchanged, which indicated the TC degradation pro-
cess by 25% Co-MIL-53(Al)/PMS system was largely unaffected by
humic acid and NO3

–. Fig. S4(a, b) showed that when the concentra-
tion of Cl- increased from 0 mM to 10 mM, there was a decrease of
7.7% in the degradation efficiency and the kobs also went down
from 0.03098 min�1 to 0.02354 min�1. The possible reason was
that Cl- reacted with SO4

�� and HO� to reduce the concentration of
the two free radicals according to Eqs. (5, 6) [43] and Eqs. (7, 8,
6) [44]. The degradation of TC was to some extent negatively
affected by the presence of CO3
2– as shown in the removal efficiency

diagram and the inserted degradation rate constant diagram of
Fig. S6(a, b). The reason maybe that CO3

2– scavenged part of SO4
��

and HO� and less reactive species generated as Eqs. (9, 10) showed
[45]. Obviously, in Fig. S7(a, b), although the removal efficiency and
kobs were slightly reduced compared to the ultrapure water envi-
ronment, 25% Co-MIL-53(Al)/PMS system still displayed excellent
removal efficiency in tap water, river water and pharmaceutical
wastewater (the quality parameters of water bodies were given
in Table. S1 in Supplementary Material). Inorganic ion impurities
in tap water, Xiang river water and other co-existing organic com-
pounds in pharmaceutical wastewater all affected the degradation
process of TC. The above results showed that 25% Co-MIL-53(Al)/
PMS system had the possibility to be applied to actual wastewater
treatment.

SO��
4 þ Cl� ! Cl � þSO2�

4

Cl � þCl� ! Cl��2

Cl� þ HO� ! ClOH�

ClOH� þ Hþ ! H2Oþ Cl�

CO2�
3 þ SO��

4 ! SO2�
4 þ CO��

3

CO2�
3 þ HO� ! OH� þ CO��

3

3.3. Comparison of other catalytic systems and stability test

In addition, compared with catalyst/PMS systems for TC
removal in previous literatures [46–49], the catalytic system in
this study had the advantages of low consumption of PMS and
high removal efficiency (Table S2). Cyclic experiments were con-
ducted to study the stability of 25% Co-MIL-53(Al) synthesized.
The relevant results were shown in Fig. 6. After four cycles, the



Fig. 5. TC degradation under different catalysts (a) (Experimental conditions: [catalyst] = 0.2 g L-1; [PMS] = 0.3 g L-1; [TC] = 30 mg L-1; [Temp] = 298 K), different dosage of PMS
(c) (Experimental conditions: [25% Co-MIL-53(Al)] = 0.2 g L-1; [TC] = 30 mg L-1; [Temp] = 298 K), different initial solution pH (e) (Experimental conditions: [25% Co-MIL-53
(Al)] = 0.2 g L-1; [PMS] = 0.3 g L-1; [TC] = 30 mg L-1; [Temp] = 298 K). Kinetic constant based on the pseudo-first-order model (b, d, f).
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removal efficiency of TC and the degradation rate constant both
decreased. The Co contents of 25% Co-MIL-53(Al) before and after
cycling were analyzed by ICP-MS. The initial Co content of 25%
Co-MIL-53(Al) was 1.3 wt% and after four cycles, the amount of
Co in the collected sample fell to 1.0 wt%. Co might be leached
out during catalytic experiments and in the recycle of catalyst,
which led to the decrease of Co content and further contributed
to the deterioration of catalytic effect. In addition, TC molecules
and other impurities might exist in 25% Co-MIl-53(Al), which
were harmful to catalytic effect. Despite this, after four cycles,
the removal efficiency of TC in 25% Co-MIL-53(Al)/PMS system
maintained a high level (80%). The FTIR spectra (Fig. 6(c))
between 25% Co-MIL-53(Al) used for the fourth time and the pris-
tine 25% Co-MIL-53(Al) were consistent. The consistency indi-
cated that the catalyst was stable. Results above all also
illustrated the great potential of Co-MIL-53(Al)/PMS systems in
wastewater treatment.
3.4. Possible active substances

As reported in the literature, advanced oxidation processes
(AOPs) based on PMS were mainly performed by reactive oxygen
species (ROS) of sulfate radicals (SO4

�-), hydroxyl radicals (HO�)
and singlet oxygen (1O2) [12,50,51]. In order to identify radical
and non-radical reactions of TC degradation by 25% Co-MIL-53
(Al)/PMS system, quenching experiments were carried out. Hydro-
xyl radicals (HO�) and singlet oxygen (1O2) were trapped by ter-
tiary butanol (TBA) and L-histidine, respectively. In addition,
methanol (MeOH) was selected to capture both hydroxyl radicals
(HO�) and sulfate radicals (SO4

�-) [15]. According to the inhibitory
effect of degradation, the effects of two free radicals and one
non-free radical could be clarified. The results of Fig. 7(a) showed
that both TBA and MeOH inhibited the degradation of TC while
the magnitude of the effect was varied. TBA reduced the removal
efficiency of TC slightly, from 94% to 90%, and the kobs only



Fig. 6. Cycling tests of 25% Co-MIL-53(Al)/PMS system of TC degradation (a), kinetic constant based on the pseudo-first-order model (b) and FTIR spectra of 25% Co-MIL-53
(Al) before and after cycling (c). Experimental conditions: [25% Co-MIL-53(Al)] = 0.2 g L-1; [PMS] = 0.3 g L-1; [TC] = 30 mg L-1; [Temp] = 298 K.

Fig. 7. TC degradation under different scavengers (a), kinetic constant based on the pseudo-first-order model (b); EPR spectra of 25% Co-MIL-53(Al)/PMS system in aqueous
dispersion by spin trapping with DMPO (c) and TMP (d) at different time intervals. Experimental conditions: [25% Co-MIL-53(Al)] = 0.2 g L-1; [PMS] = 0.3 g L-1; [TC] = 30 mg L-
1; [Temp] = 298 K.
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decreased by 0.00772 min�1. However, the addition of MeOHmade
the removal efficiency decrease to 71%, especially the kobs decrease
dramatically from 0.03098 min�1 to 0.00836 min�1. MeOH
strongly inhibited the efficiency of TC degradation. The inhibition
of TBA and MeOH indicated that the free radicals HO� and SO4

�-

were involved in the catalytic degradation of TC in 25% Co-MIL-
53(Al)/PMS and SO4

�- was dominant compared with HO�. When
adding L-histidine (5 mM), the removal efficiency decreased from
94% to 80% and kobs was reduced by 0.01907 min�1. The negative
effect of L-histidine indicated that non-radical 1O2 played an
important part in the degradation process. The conclusion of
quenching experiments showed that SO4

�- and 1O2 were the main
active substances.

To further confirm the results of quenching experiments, elec-
tronparamagnetic resonance (EPR)was applied. Itwas obvious from
Fig. 7(c) that the characteristic signals of DMPO-SO4

�- andDMPO-HO�

were detected after the addition of 5, 5-dimethyl pyrroline oxide
(DMPO). At 1min and 10min, therewere obvious two characteristic
signals of SO4

�- and HO�, which indicated that 25% Co-MIL-53(Al)
could indeed activate PMS to generate these two free radicals. For
comparison, there were only weak signals in the PMS solution. The
presence of 1O2 was verified in the same way as the radicals, except
that the additive was replaced by 2, 2, 6, 6-tetramethyl-4-
piperidinol (TMP). Fig. 7(d) showed the appearance of TMP-1O2 sig-
Fig. 8. The possible reaction mechanism of TC degradation in Co-MIL-53(Al)/PMS
system.

Fig. 9. Proposed pathways for the oxidative degradat
nal, confirming the conclusion that 1O2 was involved in the quench-
ing experiment. The results of the abovequenchingexperiments and
EPR characterization brought the following information: SO4

�- and
1O2were themain active components in the TC degradation process
by 25% Co-MIL-53(Al)/PMS system.

3.5. Possible degradation mechanism

In the catalytic degradation process of TC by the 25% Co-MIL-53
(Al)/PMS system, the porosity of MIL-53(Al) was the attachment
point of Co for PMS activation and also provided good active sites
for contact between TC molecules and active substances. According
to the above experimental results and the research conclusions
reported in previous literatures [15,50], two different ideas of cat-
alytic mechanism could be proposed. The first was the traditional
process of metal ions activating PMS to generate radical species.
As could be seen from the scanning spectra of Co 2p in Fig. 4(e),
in the synthesized 25% Co-MIL-53(Al), Co element showed +2
and +3 valences, but mainly existed in the form of Co2+. Co2+ cat-
alyzed HSO5

- components in PMS to generate SO4
�- and OH–, while

Co2+ lost an electron and was oxidized to Co3+ (Eq. (11)). In addi-
tion, as shown in Eq. (12), Co3+ could also be reduced to Co2+,
and SO5

�- and H+ could be generated at the same time, which also
ensured the continuous catalytic reaction [52]. The formed SO4

�-

might further react with OH– to generate HO� (Eq. (13)) [18]. The
second was a non-radical oxidation process. SO5

�- radicals in PMS
could react in pairs to produce S2O8

2- and 1O2 (Eq. (14)) [52]. SO5
2-

and HSO5
- reacted to form 1O2 (Eq. (15)). Eventually, the resulting

SO4
�- radicals and 1O2 non-radicals degrade TC into H2O and CO2.

The possible reaction mechanism of TC degradation by Co-MIL-
53(Al)/PMS system were showed in Fig. 8.

Co2þ þ HSO�
5 ! SO��

4 þ Co3þ þ OH�

Co3þ þ HSO�
5 ! SO��

5 þ Co2þ þ Hþ

SO��
4 þ OH� ! SO2�

4 þ HO�

SO��
5 þ SO��

5 ! S2O
2�
8 þ 1 O2

SO2�
5 þ HSO�

5 ! HSO2�
4 þ 1 O2
ion of TC under 25% Co-MIL-53(Al)/PMS system.
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3.6. TC degradation pathway

During the TC degradation, the intermediate products were
detected by LC-MS (the analysis method was shown in Supplemen-
tary Material). The detected intermediates and their possible
molecular structures including m/z = 274.2, m/z = 282, m/
z = 318.2, m/z = 393.1, m/z = 409.1, m/z = 437.2, m/z = 445 and
m/z = 475.2 were shown in Fig. S9 (Fig. S9 was shown in Supple-
mentary Material). In addition, Fig. 9 exhibited the oxidative degra-
dation of TC in the 25% Co-MIL-53(Al)/PMS system. The TC
molecules were attacked by radicals (SO4

��and HO�) and non-
radical (1O2) produced by the Co-MIL-53(Al)/PMS system, and
transferred to other substances with lower molecular weight sub-
stances. These steps mainly involved dipolar cyclic addition
towards double-bond [53], dislodging NAC bond and hydroxyl-
substitution reaction [54], deamination, ring opening. As shown
in Fig. 9, TC molecules were eventually oxidized to CO2 and H2O.
4. Conclusion

Based on the previously reported synthesis method [34], cobalt-
doped MIL-53(Al) was prepared to activate PMS for TC degrada-
tion. The 25% Co-MIL-53(Al)/PMS system showed the best removal
ability compared to the PMS alone and MIL-53(Al)/PMS systems,
with the removal efficiency of TC and TOC reaching 94% and
51.5%. The system exhibited stability after four cycles and could
resist the interference of solution pH and co-existing organic and
inorganic ions and also showed high catalytic ability in actual
water bodies (tap water, river water and pharmaceutical wastew-
ater). The degradation of TC in Co-MIL-53(Al) activated PMS was
mainly attributed to SO4

�- radical and 1O2 non-radical, and the
active substances that played a role were consistent with those
reported in other papers of studying degradation of organic pollu-
tants by activating PMS [12,15,50]. The TC molecules were
attacked by SO4

�- radical and 1O2 non-radical, then went through
dipolar cyclic addition towards double-bond, dislodging NAC bond
and hydroxyl-substitution reaction, deamination, ring opening and
eventually turned into CO2 and H2O. The above results indicate
that cobalt-doped MIL-53(Al) prepared by one-step solvent ther-
mal method is a promising heterogeneous catalyst for activating
PMS to degrade TC.
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