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Abstract

Hydroquinone generally appears in compost as a direct pollutant or an intermediate product in the aromatic
pollutant biodegradation process. The requirement of quantifying its concentration calls for efficient and eco-
nomical analytical methods. In this study, artificial neural networks (ANNs) were combined with a biosensor to
realize nonlinear determination of hydroquinone in a complex composting system. The direct detection range
for hydroquinone in compost system using biosensor reached 1.5x107® ~ 3.6x10~*M. Meanwhile, the perfor-
mance of the ANN model was compared with a nonlinear regression model with respect to the simulation
accuracy and adaptability to uncertainty, etc. Nonlinear range analysis could extend the usable detection range
of biosensor for hydroquinone and could improve the adaptability of the detecting system in real sample
determination. Results illustrated that the combined application of biosensor measurement and artificial neural
network analysis was a rapid, sensitive, and robust method in a quantitative study of a composting system. This
method could be a good analytical tool for further application in real sample determination in other complex
environments which refer to human life and health.
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Introduction

PHENOLS, SOME OF WHICH are highly toxic, are important
raw materials and byproducts of the large-scale chemical
industry (Canofeni et al., 1994). Many of them are resistant to
biotic and abiotic degradation in the remediation process. The
toxicity of phenols generated from bioremediation, such as
composting, can also bring undesirable ecological effects and
seriously affect their removal efficiencies (Kulys and Vidziu-
naite, 2003). Hydroquinone generally appears in the compost
as a direct pollutant or an intermediate product in the aro-
matic pollutant biodegradation process (Canofeni et al., 1994),
and has been found to be harmful not only to the environment
but also to human health by affecting the central nervous
system and causing chromosomal aberration (Topping et al.,
2007). With the increasing application of composting tech-
nology to the disposal of municipal solid waste (Marques et al.,
2008; Quadri et al., 2008), the significance of hydroquinone
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pollution control is becoming more prominent. Thus, it is a
critical issue to quantify the hydroquinone concentration in
the composting process of municipal solid waste.

So far, the frequently reported analytical methods in com-
posting systems include spectrophotometry, gas chromatog-
raphy, and high-performance liquid chromatography (HPLC)
(Di Corcia et al., 1996; Faure et al., 1996; Kim and Kim, 2000).
However, due to the complexity and uncertainty of the
composting system, these methods suffer from drawbacks
such as interference by the substrate turbidity and UV-
vis-light-absorbing substances, and the cumbrous and time-
consuming pretreatment of the sample (Tang et al., 2005).
Moreover, the instruments are expensive and heavy. In recent
years, biosensor has been widely applied as a detection in-
strument with superior sensitivity, high stability, reusability,
selectivity, portability, and low cost (Forzani et al., 2005; An-
dreescu and Luck et al., 2008; Drouvalakis et al., 2008; Tang
et al., 2008b). Some laccase and tyrosinase biosensors have
also been developed to detect phenolic compound and show
accurate detecting performance (Kochana ef al., 2008; Zhang
et al., 2007; Roy et al., 2005).

In our previous study (Zhang et al., 2007), a biosensor based
on the immobilization of laccase on the surface of modified
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magnetic core-shell (Fe;O4-5i0;) nanoparticles was devel-
oped for the detection of hydroquinone. Laccase can directly
oxidize hydroquinone and utilize dioxygen as an oxidant,
reducing it to water. In the reaction, hydroquinone, which
was an electron donor for the oxidized form of the enzyme,
was mainly converted into quinone and/or free radical
product. It was then reduced on the surface of the electrode at
potentials below 0V (vs. SCE), which efficiently shuttled
electrons between laccase redox center and the electrode
surface in a dynamical equilibrium. The developed biosensor
had a linear detection range of 1 x1077 ~ 1.375x10~* M, with
a detection limit of 1.5x10"®M (Zhang et al., 2007). Techni-
cally, the result is just as well as other hydroquinone sensors.
However, when applied to the real-world samples, the bio-
sensor measurement is affected by its linear range. First, the
concentration of analyte is uncertain in the real sample, and
erroneous results will be given if the concentration of analyte
exceeds the linear range (Bessant and Saini, 1999). In addition,
the linear range is the normal choice in sensor detection, but
generally, the linear range is only a part of the responded
signal range; in other words, there is a wide nonlinear range
that is not being applied. In fact, there is a nonlinear range of
the responded signal range of the biosensor in hydroquinone
detection, which is 1.5x107% ~ 3.6x10™*M in our previous
work (Zhang et al., 2007). If the wide nonlinear range can be
fully used, there will be less limitation coming from the linear
range, and a more convenient and high-efficient analytical
method in practical application will be possible.

Due to their intelligence, artificial neural networks (ANNs)
can easily simulate, analyze and solve the nonlinear, overlap
and uncertain problems in complex systems. ANNs have been
receiving increased attention from many researchers. Some
researchers have successfully coupled ANN with sensor as a
chemometric tool for analyzing a complex system, the ANN
showed a strong, nonlinear mapping and self-learning ability
to cope with complex data. ANN introduced into biosensor
analysis hither to was mainly used to analyze the target analyte
of biosensor array or the multiple analytes of a single biosensor
with high accuracy and correlativity in comparison with linear
regression models (Hasani et al., 2007; Gutés et al., 2005a,
2005b; Gutiérrez et al., 2007; Ni et al., 2005; Tang et al., 2006).
Tang et al. (2008a) applied a laccase sensor and artificial neural
networks in catechol determination, and the architecture of
ANN was built with 12 input neurons directly taken from data
points of each amperometric curve before the detection current
reached steady state. As an extension of our previous efforts, a
feed-forward backpropagation—-ANN model was developed
based on the relationship between hydroquinone concentra-
tions and response currents of biosensor. Different from Tang
et al.’s work (2008a), we adopted the current stabilizing time,
steady-state current and three characteristic values of response
currents of biosensor to build the ANN, which resulted in a
completely different network construction. A different non-
linear regression model was also developed in our study for
comparison with the performance of the ANN model. The
nonlinear range analysis was completed to extend the direct
detection range of biosensor for hydroquinone in a complex
composting system. Coupled with the inherent high sensitiv-
ity, rapidity, robustness and portability of an electrochemical
sensor technique, the presented method enables the develop-
ment of a fast and inexpensive on-line monitoring system in
industrial waste composting and bioremediation.
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Materials and Methods
Reagents and materials

Laccase (EC 1.10.3.2, 23.3U/mg) was purchased from
Fluka. Tetraethoxysilane (TEOS), 3-aminopropyltriethox-
ysilane (APTES), polyethylene glycol (PEG), and all other
chemicals were of analytical grade and used as received. The
preparation of carbon paste electrode, synthesis of Fe;O,
magnetic nanoparticles and the immobilization of laccase on
the surface of nanoparticles were implemented in the same
way as introduced by Zhang et al. (2007).

Hydroquinone measurements in compost extracts

The HPLC and amperometric measurements of hydroqui-
none concentration were applied using compost sample ex-
tracts. The composting process was carried out as described in
our previous work (Zeng et al., 2004). Ten grams of compost
sample were extracted with 200mL water by agitating at
200 rpm for 2 h. The supernatant was centrifuged to obtain the
compost extract. The dosage of hydroquinone into each
compost extract was controlled. Hydroquinone concentration
was then measured by HPLC method under the following
conditions: the eluent consisted of an isocratic mixture of
water, acetonitrile, and acetic acid (88:10:2) at flow rate
of 0.7mL-min !, and the concentration of hydroquinone
was detected by ultraviolet spectrophotometer at 280 nm
(Chapuis-Lardy et al., 2002). The electrochemical measure-
ments of hydroquinone concentration were performed on
CHI660B electrochemistry system (Chenhua Instrument,
Shanghai, China). The three-electrode system used in this
work consisted of a carbon paste electrode (diameter of 8§ mm)
as working electrode of interest, a saturated calomel electrode
(SCE) as reference electrode and a Pt foil auxiliary electrode.
As the optimization results of the amperometric monitoring
system, the electrolyte was 30mL 67 mmol-L ™' phosphate
buffer (pH 5.5) containing hydroquinone, and the oxidation
peak potential was —0.232V (vs. SCE) for the highest sensi-
tivity of the enzyme sensor.

Application of ANN models

As shown in Fig. 1, ANN models were applied to analyze
the measured hydroquinone concentrations in compost sam-
ples and the corresponding amperometric response of bio-
sensor. The measurement data were divided into two parts:
one for prediction, and the other for model validation. The
data from 25 compost extract samples were used to train the
ANN network, as shown in Fig. 2. Other 14 extract sample
measurements were applied to estimate the modeling per-
formance. The data from other 12 extract samples were used
to validate the ANN model application.

Matlab 7.0 (Mathworks, Natick, MA), its Neural Network
Toolbox in particular, was employed to develop the back-
propagation-ANN (BP-ANN) models. Of the various existing
ANN architectures, the multilayer feedforward back-
propagation network defines one of the most widely and
successfully used algorithms (Schafer et al., 2007). It consists of
one input layer, one output layer, and one or more hidden
layers (Looner, 1997). As a good pattern classifier, signal filter
and data compressor, this type of network was widely
adopted (Torrecilla et al., 2007). Specifically, the back-
propagation network is applied to model systems based
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on nonlinear dynamics, while the knowledge of the to-be-
modeled system is not necessarily required. Therefore, ANN
has enormous applicability (Torrecilla et al., 2007).

Results and Discussion
Construction of neural network based prediction model

In this paper, ANN was combined with the biosensor to
detect hydroquinone in compost. The current stabilizing time,
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FIG. 2. Related information of 25 compost extract samples
for the training network. Hydroquinone concentration for
training set is between 0.15 uM and 360 uM.

steady-state current and three characteristic values of re-
sponse current after feature extraction were adopted as the
input vectors. These five vectors contained an intact structure
of characteristic curve and the correlation factors to function
with the ANN reasonably.

First, the response current was analyzed to find out the
characteristic values A;, A, A3, and obtain an equation that
could describe the features of the response current.

y:A1x2+A2x+A3 (1)

where y is the response current and x is the response time.

Next, the other two factors (current stabilizing time and
steady-state current) were introduced into the ANN running
as the input vectors which kept the input information intact.
Generally, the current stabilizing time was proportional to the
analyte concentration in electrochemical sensor determina-
tion. The change of the stabilizing time with different con-
centrations of different analytes exhibited some available
information, that is, a correlation exists between concentration
and corresponding stabilizing time. Moreover, the steady-
state current could reflect the response result directly. The five
factors could represent all characters and relations between
the response current and the analyte concentration, which
formed an intact and scientific structure to perform a piece of
accurate information of the response current.

In the experiment, under the optimum condition, different
curves of current vs. time were obtained corresponding to the
hydroquinone concentrations. The concentration of hydro-
quinone in the compost extracts varied from 1.5x107% to
3.6x10"*M. The concentration of hydroquinone is the target
for ANN modeling with a single hidden layer. It was reported
that an ANN with the single hidden layer mapping structure,
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FIG. 3. Example of the ANN
architecture used to interpret
amperometric responses.
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one input layer and one output layer, could resolve the non-
linear problem that appeared in electrochemical signal anal-
ysis process in the relative literature (Gutés et al., 2005c).
Therefore, networks with more than one hidden layer were
not considered in this paper. The architecture of BP-ANN is
shown in Fig. 3.

Network performance

Feed-forward backpropagation with random initial weights
and biases to avoid selecting fixed conditions was used to train
the networks, which might favor one particular network de-
sign. An exhaustive study of the network model structure was
done to optimize the determination of hydroquinone concen-
tration. The network performance was quantified by calcu-
lating the root mean square of error (RMSE) between the
expected and predicted hydroquinone concentration for the
parameter set. The calculating formula of RMSE (uM) is

RMSE = Z (a; —a;)*/n (2)

where a; and 4; are, respectively, the predicted and the ex-
pected concentrations by the ANN, and 7 is the number of the
test samples.

Variability will occur owing to random initial values of
connection weights during network training with the exactly
same programme (Bachmann et al., 2000). Therefore, each
ANN programme was run more than five times, and the
RMSEs for the external test sets were averaged.

Generally, four fundamental types of transfer functions
were usually utilized for hidden and output layers in ANNs
modeling, namely, hyperbolic tangent sigmoid transfer
function (Tansig); logistic sigmoid transfer function (Logsig);
linear transfer function (Purelin) and symmetric saturating
linear transfer function (Satlins). Sigmoid functions, due to
their powerful nonlinear approach capability, are often used
in hidden layers. As to the output of transfer function, the
range of Tansig is (—1, 1), Logsig is (0, 1), Purelin is (— o0, o),
and the output of Satlins lies in the range of [-1, 1]. In the
modeling, the input and output data sets were normalized
and the range of the output in the sample set is in (0, 1).

The ability of nonlinear approach of BP-network com-
monly was realized by sigmoid transfer function. A BP-net-
work was built with Levenberg-Marquardt backpropagation
(trainlm) as optimization algorithm and five data vectors
as the inputs. According to Kolmogorov’s theory (Nielson,
1989), hidden neuron number usually takes a formula with

npy=+/(m+m+1)+a (3)
where 1, 117, and m represent the numbers of hidden neuron,
input neuron, and output neuron, respectively; a=1...10. To
determine the optimal hidden neuron number, the perfor-
mances of the network under different transfer function
combinations and hidden neuron numbers on the network
performance were studied synchronously. The RMSEs were
calculated with different transfer function combinations in the
hidden and output layers and 10 neuron gradients (4 ~ 13) in
the hidden layer to optimize the transfer function and neuron
number. It was found that the training process with Purelin in
the output layer could not meet the performance goal when
the minimum gradient was reached, resulting in large RMSEs.
According to Fig. 4, the comparison of the transfer func-
tion combinations of Tangsig-Satlin, Logsig-Satlin, Tangsig—
Logsig, and Logsig-Logsig showed that the network with
Logsig-Logsig gave slightly lower RMSE values, but the dif-
ference was not significant. However, the lowest RMSE value
was obtained with 10 hidden neurons and Logsig-Logsig as
transfer function combination, shown in Fig. 4.

Next, the effects of the different optimization algorithms
with five input neuron numbers on the model performance
were evaluated and optimized in parallel. As shown in Fig. 5,
BFGS quasi-Newton method (trainbfg), Bayesian regulariza-
tion backpropagation (trainbr), Levenberg-Marquardt back-
propagation (trainlm), gradient descent with momentum
backpropagation (traingdm), gradient descent backpropaga-
tion (traingd), gradient descent with momentum and adaptive
learning rate backpropagation (traingdx) and conjugate gra-
dient backpropagation with Powell-Beale restarts (traincgb)
were respectively applied to the ANN modeling. The RMSEs
represented the performances of the models with different
input neuron numbers and algorithms under optimal transfer
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FIG. 4. Root mean squares of error (RMSEs) in hydro-
quinone concentration prediction for different function
combinations and neuron numbers in the hidden layer with
input neuron number of 5 and Levenberg-Marquardt back-
propagation (trainlm) as optimization algorithm.

function combination of Logsig-Logsig and hidden neuron
number of 10. The ANN models with trainbfg, traingdm,
traingd, and traincgb as algorithms, respectively, could not
meet the performance goal when the minimum gradient was
reached in the training process. Therefore, those algorithms
were not taken into account. Although trainbr and traingdx
could get lower RMSE values sometimes, the results were not
steady with the increasing training time. Contrarily, trainlm
not only showed the lowest RMSE value, but also exhibited
stability in its results. So trainlm was selected as the optimal
algorithm to obtain the lowest RMSE value. In this study, the
inputs were the five factors referred hereinbefore for each
independent sample. For the network prediction accuracy, we
can increase the number of training data sets or number of
data points in each set. However, there are drawbacks of

18

N\

6.8472

Z
2
7

NN
NI

NN
AN

i

traincgb

trainlm  traingdm  traingd

Optimization algorithm

trainbfg  trainbr traingdx

FIG. 5. RMSEs in hydroquinone concentration prediction
for different optimization algorithms with the optimal trans-
fer function combination of Logsig-Logsig and hidden neu-
ron number of 10.
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adopting too many samples. It will result in a poor general-
ization by the network and increase training time. Likewise,
there are also limitations associated with selecting too few
samples, which will lead to the inability of the network to train
successfully. Therefore, taking the complexity of the model
and economical training time into account, adequate data
were selected for adequate accuracy of simulation in our
study. The fixed number of five inputs not only contained
intact information, but also saved the ANN running time to
get an efficient operation.

In order to obtain accurate hydroquinone concentrations
from ANN models, triplicate calculation results of the opti-
mized network was averaged, the RMSEs of 6.8472 for
hydroquinone concentration was achieved. The final optimi-
zation results of ANN model are shown in Table 1.

Comparison of prediction results between
nonlinear regression model and ANN
model in composting system

The performance of the ANN model was compared with
the regression model in respect to correlation coefficient,
adaptability to uncertainty, etc. The equation of nonlinear
regression model is:

y=0.8333x" — 1.8577x% +2.0437x — 0.0405 (4)

where y is hydroquinone concentration (uM), x is the response
current value (¢A), and R% = 0.9778. The nonlinear regression
model and ANN model here were applied to predict hydro-
quinone concentration in 12 compost extract samples sepa-
rately.

Figure 6 showed the correlation between the experimental
and predicted values of nonlinear regression model and ANN
model, and there was a nonlinearity in the hydroquinione
concentration range of 1.5x10® ~ 4.5x10 *M. The fitting
degree of ANN with high correlation coefficients (R?=0.9957)
excelled the nonlinear regression model’s (R?>=0.9778). It was
indicated that the predicted values by ANN fit better to the
experimental value than those of the nonlinear regression
model. It is not difficult to identify the factors which can ac-
count for this result. First, ANN, owing to its powerful pre-
diction ability, is able to enlarge determining limit, from
1x1077 ~ 1.375x10 *M to 1.5x10"® ~ 3.6 x10~*M, by mak-
ing use of data in a wider scope, and meanwhile improve the

TaBLE 1. OPTIMAL RESULTS OF ARTIFICIAL NEURAL
NETWORK ARCHITECTURE AND TRAINING PARAMETERS

Architecture /parameter Value

Input neuron number 5

Hidden neuron number 10

Transfer function in the Logsig
hidden layer

Output neuron number 1

Transfer function in the Logsig

output layer
Optimization algorithm Levenberg-Marquardt

backpropagation (trainlm)
RMSE for hydroquinone 6.8472

concentration (uM)
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determination accuracy and analysis efficiency. Thus, ANN
combining with biosensor technology turned out to be an
efficient analytical tool to avoid this problem and achieve
more convenient and applicable detection. Second, the as-
cendancy of ANN is of particular prominence in the relatively
high concentration range. The linear range of the linear model
for hydroquinone determination in our previous work was
only 1x10~7 ~ 1.375x10*M (linear detection range), while
the detection range which the ANN model could direct ana-
lyze amounted to 1.5x10 % ~ 3.6x10*M (nonlinear detec-
tion range), which is wider than the other hydroquinone
sensors (Vianello et al., 2004; Jarosz-Wilkotazka et al., 2005; de
Oliveira et al., 2007). A nonlinear detection range is superior to
a linear one, as it is difficult even impossible to judge whether
a concentration is in the linear range in practice. Therefore, the
risk of inaccurate calculation can be reduced by application of
the nonlinear detection range. With that, ANN offers better
performances than the other hydroquinone sensors in detect-
ing the real samples. Last but not least, due to the black-box
approach that depends only on the observed values, ANN can
easily describe the complicated phenomenon in the complex
compost system, and therefore, simplify the detection.

Therefore, as the results indicated, ANNs were superior to
the nonlinear regression model and traditional linear regres-
sion for the hydroquinone concentration determination in
compost system. Combined with the ANN model, the direct
detection range for hydroquinone in a compost system of the
biosensor was widened and nonlinear determination was
achieved. This combination would enhance the performance
of the detection system in further application in real compost
extract sample determination.

The practicability of the biosensor to determine hydroqui-
none in the complex compost system has been verified in our
previous work (Zhang et al., 2007). We introduced the ANN
into the detection system to advance its performance and then

built an on-line system of detection and prediction as a che-
mometric tool to determine the hydroquinone concentration
in compost system more effectively. Based on ANNs’ strong
learning and prediction capability, it can be applied to treat
the nonlinear, dynamic, and uncertain properties of the
complex composting system, which cannot be treated by re-
gression models. The combination of the two techniques
advanced the detection performance and was expected to
make it more effective in practical application.

Conclusions

Hydroquinone harms human health and environment, and
it is practically significant to detect hydroquinone in envi-
ronmental sample. An on-line system of detection and pre-
diction by artificial neural networks as a chemometric tool
was developed to determine hydroquinone in compost sys-
tem more effectively. Due to the nonlinear determination, the
direct detection range for hydroquinone in the compost sys-
tem of the biosensor was extended to 1.5x107% ~ 3.6x107*M,
which was superior to other hydroquinone sensors. This
would enhance the performance of the detection system in
further application in real compost-extracted sample deter-
mination. The performance superiority of the ANN model
was displayed by comparing the nonlinear regression model
with respect to simulation accuracy and adaptability to un-
certainty, etc. The results showed that this biosensor com-
bined with the ANN model could be a good analytical tool for
further application in real sample determination in other
complex environments.
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