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Abstract 40 

With the increasing requirement of efficient organic transformations on the basic 41 

concept of Green Sustainable Chemistry, the development of highly efficient catalytic 42 

reaction system is greatly desired. In this case, gold (Au)-based nanocatalysts are 43 

promising candidates for catalytic reaction, especially for the reduction of 44 

nitroaromatics. They have attracted wide attention and well developed in the 45 

application of nitroaromatics reduction because of the unique properties compared with 46 

that of other conventional metal-based catalysts. With this respect, this review proposes 47 

recent trends in the application of Au nanocatalysts for efficient reduction process of 48 

nitroaromatics. Some typical approaches are compared and discussed to guide the 49 

synthesis of highly efficient Au nanocatalysts. The mechanism on the use of H2 and 50 

NaBH4 solution as the source of hydrogen is compared, and that proposed under light 51 

irradiation is discussed. The high and unique catalytic activity of some carriers, such as 52 

oxides and carbons-based materials, based on different sizes, structures, and shapes of 53 

supported Au nanocatalysts for nitroaromatics reduction are described. The catalytic 54 

performance of Au combining with other metal nanoparticles by alloy or doping, like 55 

multi-metal nanoparticles system, is further discussed. Finally, a short discussion is 56 

introduced to compare the catalytsis with other metallic nanocatalysts. 57 

Keywords: Au nanocatalysts; Synthesis; Reduction; Nitroaromatics; Metal 58 

nanoparticles. 59 

60 
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1．Introduction 61 

Metal nanoparticle (NP) catalysts play a dominating role in production of chemicals, 62 

polymers, and fuels (Lim 2016, Mitsudome et al. 2015). They are the keys to the 63 

environmental protection, like clean-up of effluent gases and degradation of pollutant 64 

substance (Wang et al. 2014, Zhao et al. 2016a). Gold (Au), one kind of noble metals, 65 

is historically considered as a catalytic inert element until Hutchings and Haruta 66 

observed that Au catalysts were highly efficient in chlorination of acetylene and carbon 67 

monoxide oxidation at 1980s (Haruta et al. 1989, Hutchings 1985). When subdivided 68 

to nanoscale, Au-based catalysts provide incredible reactivity for catalysis, which is 69 

hard to be replaced by other metals, especially for the reduction process like oxygen 70 

and carbon dioxide reduction, water reduction for hydrogen production, and reduction 71 

of nitroaromatics because of its unique properties of localized surface plasmon 72 

resonance (LSPR), large surface-to-volume ratio, and electron transfer (Chung et al. 73 

2018, Hutchings and Haruta 2005, Li et al. 2018a, Qin et al. 2018, Wang et al. 2018a). 74 

Au nanocatalysts also have been demonstrated to be attractive in industry and 75 

environmental protection due to their green and efficient redox properties (Scurrell 76 

2017). They are widely used and the topic of Au nanostructured catalysts has been 77 

augmented exponentially in the last 20 years. 78 

Gold nanoparticles (AuNPs) with small size show excellent catalytic performance 79 

for many chemical reactions, especially for the reduction of nitroaromatics in water 80 

(Hirakawa et al. 2016, Moghaddam et al. 2017). Some nitroaromatics, such as 81 

nitrophenol compounds, organic dyes, etc., are important intermediates in industrial and 82 
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agricultural processes (Chen et al. 2015, Cheng et al. 2016b, Cheng et al. 2017, Gong 83 

et al. 2009, Hamidouche et al. 2015). However, environment has been suffered from 84 

pollution at significant levels because of the high toxicity of these compounds (Cheng 85 

et al. 2016a, Huang et al. 2017a, Tang et al. 2014, Xue et al. 2018). The use of 86 

nitroaromatics is difficult to forbid, hence, these chemicals are inevitably discharged 87 

into the environment (Cheng et al. 2016c, Huang et al. 2016, Rafatullah et al. 2010, 88 

Yang et al. 2010). Therefore, remove and degrade these compounds to less toxic 89 

chemicals are very important. In this case, AuNPs exhibit good catalytic activity for 90 

reduction of nitroaromatics to its corresponding amines, because they have the 91 

advantages of large surface-to-volume ratio and unique electronic properties (Downing 92 

et al. 1997, Kuroda et al. 2009). They stabilize the 6S2 electron pairs by combining the 93 

size and relativistic effect, thus determining the catalytic property for nitroaromatics 94 

reduction because of the high energy and reactivity of 5d electrons (Narayanan and 95 

Sakthivel 2011, Pyykko 1988). Compared with other metal catalysts, AuNPs have two 96 

distinct advantages: 1) the catalytic activity is highly and directly related to the particle 97 

size that must be nanoscale but not microscale. Besides, the catalytic activity is 98 

increased with the decrease of particle size. Thus, the catalytic activity of Au can be 99 

well controlled by adjusting the size; 2) The high catalytic performance can be obtained 100 

under mild conditions even on low temperature. This is benefit for the reduction under 101 

ambient temperature and energy saving. 102 

Unfortunately, free AuNPs cannot be recycled and are easy to aggregate due to the 103 

high surface energy, which significantly decreases the catalytic efficiency and 104 
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obviously slows the reaction kinetics (Pocklanova et al. 2016, Qin et al. 2017). The 105 

surface active sites and interfacial free energy are reduced due to the aggregation, hence 106 

weakening the catalytic activity (Varma 2016). In order to solve this problem, great 107 

efforts are being devoted to immobilize AuNPs on carriers, such as oxides (Lee et al. 108 

2008, Song and Hensen 2013), carbon-based materials (Tan et al. 2015, Yang et al. 109 

2013), etc., for obtaining effectively stable and highly dispersed Au nanocatalysts, 110 

offering more surface active sites, and enhancing the interfacial free energy. Moreover, 111 

some strategies tend to investigate the size and structure of AuNPs by using different 112 

reducing agent and stabilizer, alloying other metal NPs, and decorating some ligands to 113 

form smaller and bimetallic or multi-metallic catalysts (Conte et al. 2009, Fountoulaki 114 

et al. 2014, Huang et al. 2017b, Sau et al. 2001). Due to the size effect, synergistic effect, 115 

interfacial effect and shape effect between the supports and Au, easily separated, well 116 

cycled, and highly efficient Au nanocatalysts can be obtained. Thus, Au nanocatalysts 117 

provide promising potential in catalytic reaction. 118 

Some wonderful reviews have been published about nitroaromatics reduction on the 119 

basis of Au and other metal NPs (Mitsudome and Kaneda 2013, Pan et al. 2013). For 120 

example, Kadam et al. reviewed the different methods for nitroaromatics reduction 121 

based on the source of hydrogen (Kadam and Tilve 2015). Aditya et al. reported a 122 

comprehensive paper, which mainly focused on the reaction process, mechanism, and 123 

catalytic performance of different kinds of catalysts (Aditya et al. 2015). However, none 124 

of them have reviewed the nitroaromatics reduction by Au nanocatalysts only. Zaho et 125 

al. synthetically reviewed the nitrophenol reduction by Au- and other transition metal 126 
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nanoparticles and discussed the difference between them in detail (Zhao et al. 2015). 127 

But the synthetic methods for Au nanocatalysts was not mentioned. Furthermore, the 128 

investigation of Au nanocatalysts for nitroaromatics reduction has been developed in 129 

the past four years, especially for the reduction under light irradiation. Hence, in this 130 

review, some typical synthetic approaches for Au nanocatalysts including the traditional 131 

and novel methods have been reviewed and discussed to guide the fabrication of highly 132 

efficient Au nanocatalysts. The unique catalytic activity of them in reduction of 133 

nitroaromatics has been discussed. The kinetic model and route of this reaction are 134 

represented to reveal the potential mechanism under different conditions, including the 135 

reaction medium and light effect. This review further emphasizes some typical and 136 

recent examples of Au nanocatalysts that have achieved high activity and compares the 137 

catalytic performance of them. A short discussion is introduced to compare the 138 

catalytsis with other metallic nanocatalysts. Through this review, the readers will 139 

understand the role of Au nanocatalysts in catalytic reaction profoundly. We hope that 140 

readers can be inspired by this review and gain more highly efficient Au nanocatalysts, 141 

pushing further development of Au catalysts application. 142 

2. Synthetic strategies for Au nanocatalysts 143 

The preparation of colloidal AuNPs has been well described in many researches 144 

(Dykman and Khlebtsov 2012, Qin et al. 2017, Zhang et al. 2014a). AuNPs fabricated 145 

through Brust-Schiffrin method are primarily used for catalysis because it provides 146 

smaller size of AuNPs. The procedure has been well described in our previous works 147 

(Fang et al. 2017, Guo et al. 2016, Lai et al. 2015, Lai et al. 2017, Zeng et al. 2017). In 148 
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this section, we mainly retrospect some typical synthetic strategies for supported Au 149 

nanocatalysts, which are widely applied in the reduction of nitroaromatics. They can be 150 

usually divided into five parts: the deposition-precipitation (DP), co-deposition (CP), 151 

impregnation (IMP), colloid deposition (CDP), and newly developed methods. 152 

2.1. Deposition-precipitation 153 

DP is one of the earliest strategies for preparation of supported Au nanocatalysts, 154 

which was recognized by Haruta and co-workers, who reduced AuNPs on titanium 155 

dioxide (TiO2) firstly (Tsubota et al. 1991). The operation procedure consists in 156 

allowing Au salt become Au(OH)3 by adding alkali, the precipitant, into the Au salt 157 

solution to adjust the pH with the range of 6 to 10. After aging for a while, the 158 

aforementioned Au solution is adsorbed by the support and the mixture is incubated 159 

with properly selected concentration, temperature, stir, and time. Subsequently, the 160 

suspension is treated by a series procedure of filtration, washing and drying. The last 161 

and most important procedure is the reduction of AuNPs from Au3+. Some studies kept 162 

it under a flow of H2, and others made it be calcined in a flow of O2 or air (Song et al. 163 

2015, Ulrich et al. 2017, Wang et al. 2015a). The calcined Au nanocatalyst provides 164 

better performance but some deactivation has been observed due to the increasing 165 

particle size when sintering. 166 

The key procedure of this method is the strict control of pH. It can be adjusted by 167 

precipitant, which usually uses Na2CO3, urea, NaOH, etc. (Torres et al. 2016). DP 168 

requires deposition occurs in alkaline condition, so it is applicable in supports which 169 

have a point zero charge at a high pH (≥ 6), e.g. TiO2, ceria (CeO2), zirconia (ZrO2), 170 
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ferric oxide (Fe2O3), aluminum oxide (Al2O3), and magnesium dihydroxide (Prati and 171 

Martra 1999, Xu et al. 2012b). Other supports, e.g. carbon, silica dioxide (SiO2), and 172 

tungsten trioxide, cannot obtain well dispersed and small size of AuNPs by using this 173 

method (Chen et al. 2006). Before reduction step, AuNPs are partially deposited on the 174 

supports. Hence, the loading of Au may be incomplete, but much higher than CP 175 

method (mentioned as follows) (Khoudiakov et al. 2005). Besides, the most attractive 176 

merit of DP is that AuNPs can deposit on supports with any kind of shapes, including 177 

powder, honeycomb, bead, or thin film (Torres et al. 2016). AuNPs are mostly deposited 178 

on the surface of supports, which contributes to the catalytic performance of Au 179 

nanocatalysts. 180 

2.2. Co-deposition 181 

Similar with DP, CP uses an aqueous solution of Au salt. The Au salt is mixed with 182 

a corresponding metal salt precursor and stirred under a certain temperature. The 183 

precipitant is added to obtain hydroxide or carbonate coprecipitate. After that, the slurry 184 

is filtered, washed, and dried. Finally, the precursor is calcined for AuNPs reduction as 185 

DP method (Waters et al. 1994). The difference of CP and DP is the mixture of reaction. 186 

In this regard, CP also can be called the one-step synthetic method. The Au particles 187 

are regularly dispersed and in nanoscale but the particle size may be increased during 188 

calcine as the DP method and the size is difficult to control sometimes. This procedure 189 

requires the precursor compound of support to become hydroxide or carbonate, which 190 

can be deposited with Au(OH)3 at the step of deposition (Solsona et al. 2009). 191 
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2.3. Impregnation 192 

  IMP is the simplification of DP and CP. It is unnecessary to adjust the pH, namely, 193 

there is no need to add alkali salts as the precipitant (Solsona et al. 2006). When the Au 194 

source salts injected into the dried support, after technical filtration, washing and drying 195 

in appropriate temperature, the resulting catalysts are further calcined in a flow of O2 196 

or H2 (Grisel et al. 2001). IMP is much simpler and usually used to prepare Au 197 

nanocatalysts which need certain mechanical strength rather than high content of active 198 

component. As a result, it has been widely used in industry. However, the low content 199 

of active component is not conducive to catalytic reaction. It is reported that this is 200 

commonly related to the size and size distribution. But there are evidences demonstrate 201 

that the low activity of MIP is due to the lack of some kind of interaction between 202 

AuNPs and support (Lin and Vannice 1991, Lin et al. 1993). Additionally, the pH of Au 203 

salts solution is always very low, so this method is not so suitable for some supports 204 

which can be dissolved in a strong acidic solution, e.g. Al2O3 and magnesium oxide 205 

(MgO). 206 

2.4. Colloid deposition 207 

CDP method, also called the immobilization method, is theoretical different with 208 

these traditional methods mentioned above. Generally, AuNPs are reduced first by 209 

appropriate methods, e.g. Turkevich-Frens and Brust-Schiffrin method, to obtain 210 

colloids rather than load on the support through sintering and reduction. Thus, the size 211 

can be well controlled by this method. Subsequently, the prepared AuNPs are injected 212 

into the support or the support is dipped into the AuNPs solution for incubation a few 213 



11 

 

days until AuNPs are completely adsorbed by support. Resulting catalyst is finally 214 

prepared by filtering, washing, and drying. The key procedure lies in the adsorption of 215 

AuNPs by support. In this case, the support should have large surface area with strong 216 

adsorption ability and can be washed so clean that it would not induce aggregation of 217 

AuNPs. With this respect, the adsorption of AuNPs into gel has been well developed. 218 

A typical example is the silica gel. Yutaka Tai (Tai et al. 2001) prepared an Au 219 

cluster/SiO2 nanocomposite catalyst by spontaneous wet-gel formation. Results 220 

demonstrated that the colloids were penetrated into the gel and were adsorbed only on 221 

the surface of the gel due to the reaction between gel and polar solution. The anchoring 222 

of AuNPs was because the surrounding thiol molecules of AuNPs had a permanent 223 

dipole moment, which induced the dipole interaction. In addition, the particle sizes and 224 

size distribution were not changed. On the basis of this mechanism, thermally stable 225 

and highly loaded AuNPs/TiO2-coated SiO2 aerogels are prepared with the controlled 226 

size and loading amount of Au (Tai et al. 2004, Tai and Tajiri 2008). 227 

Other supports, e.g. metal-oxide particles (Nutt et al. 2006, Zheng and Stucky 2006), 228 

activated carbon (AC) (Biella et al. 2002), mesoporous carbon (MC) (Ma et al. 2013), 229 

oxidized mesoporous carbon (OMC), carbon nanotubes (CNTs), and graphite (GR) (Qi 230 

et al. 2015) have been well developed for supported Au nanocatalysts synthesis using 231 

both weak and strong interactions. In particular, the adsorption way of MC or OMC-232 

supported Au nanocatalysts is that AuNPs with small size are incorporated into the 233 

larger size of mesopore channels thus preventing the aggregation of AuNPs. In addition, 234 

the stabilizer plays an important role in the size and catalytic performance (Shi et al. 235 
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2008, Zhong et al. 2013). Robert group has developed a series of experiments about the 236 

n-hexanethiolate-stabilized AuNPs catalysts supported by metal oxide. Results showed 237 

the size of AuNPs increased during subsequent thermolysis (Almukhlifi and Burns 238 

2015a). The length of n-hexanethiolate and Au content had influences on the catalytic 239 

performance of Au nanocatalysts (Almukhlifi and Burns 2015b, 2016a). Furthermore, 240 

the presence of small amount of sulfate enhanced the catalytic activity owing to an Au-241 

enhanced Mars-van Krevelen mechanism (Almukhlifi and Burns 2016b). 242 

2.5. Newly developed methods 243 

  The aforementioned methods for Au nanocatalysts preparation are traditional and 244 

mainly applied in some simple supports and the size and size distribution may be 245 

difficult to control. In this case, for the controlling of size and size distribution and some 246 

relatively complicated supports and structure like polyhedral anatase, Au@oxide 247 

yolk@shell nanospheres, some novel methods including polyols reduction (Yang et al. 248 

2013), photo- and electro-deposited method (Nguyen et al. 2016, Wei et al. 2017b), etc., 249 

have been well developed. The photo-deposited method are usually proposed by putting 250 

the mixture of supports and Au salt under the UV/vis irradiation and using methanol as 251 

the sacrificial agent (Maicu et al. 2011). Other photo-deposited method like pulsed laser 252 

ablation was also developed (Wei et al. 2017a, Xu et al. 2014). This method is suitable 253 

for the preparation of photocatalyst, in which the supports have good photocatalytic 254 

activity and AuNPs are easy to deactivate in air when using other methods. Pulse 255 

electrodeposition method is another newly developed method, in which the size and 256 
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dispersion of AuNPs can be easily achieved via changing the electrochemical 257 

parameters. The prepared Au nanocatalyst by this method exhibits excellent plasmon-258 

induced photoelectrocatalytic activity (Wu et al. 2015a). Au nanocatalysts synthesized 259 

by photo- and electro-deposition only need one-step and do not need the use of 260 

surfactant or additive. The catalytic activity of them are improved by making use of the 261 

plasmonic effect of AuNPs, which is conducive to the application of Au nanocatalysts 262 

in photoelectrocatalysis. But the introduction of light energy or electricity is necessary. 263 

  Au@oxide yolk@shell nanospheres provide good catalytic performance because of 264 

their low density, high specific surface area, stability, and selectivity. They can propose 265 

promising application on selective catalysis by controlling the pore size of the shell 266 

accurately. However, this kind of Au nanocatalyst is usually prepared by using etching 267 

or template method, which are suitable for single oxide shell. Interestingly, the group 268 

of Zhang (Li et al. 2018b) recently has proposed a new strategy for preparation of 269 

Au@multi-oxide yolk@shell nanospheres system by integrating redox self-assembly 270 

and redox etching process. This simple strategy provides new avenue for facile and 271 

clean synthesis of complex noble metal@multi-oxide yolk@shell nanospheres. 272 

Although these newly developed methods illustrated here are mainly for photocatalysis 273 

or other catalytic processes, they are still instructive for the preparation of highly 274 

efficient Au nanocatalyst and guidance of nitroaromatics reduction reaction. 275 

3. Mechanism of catalytic reaction 276 

3.1. Kinetic model 277 

The traditional Langmuir−Hinshelwood (LH) model is usually used in the kinetic 278 
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analysis of nitroaromatics reduction by Au nanocatalysts. Namely, all of the reactants 279 

are absorbed on the surface of AuNPs to react. Kinetic data can be obtained by 280 

monitoring the concentrations of nitroaromatics via UV-vis spectroscopy. The 281 

subsequent data calculation yields the apparent reaction rate, kapp, one of the most 282 

important parameters to assess the catalytic property of Au nanocatalysts. The analysis 283 

of kinetic data has been well described by Wunder et al. (Wunder et al. 2010), who used 284 

the reduction of 4-nitrophenol (4-NP) as a model reaction to test the catalytic activity 285 

of Au/platinum (Pt) NPs (Fig. 1). They proposed a series of studies by immobilizing 286 

AuNPs on the spherical polyelectrolyte brushes and demonstrated that kapp was not only 287 

concerned with the total surface of all AuNPs (S), but also the rate-determining step, as 288 

well as the adsorption constants of 4-NP and borohydride (k4-NP and kBH4). Moreover, 289 

as kapp is strictly proportional to S (Panigrahi et al. 2007, Saha et al. 2009), the relations 290 

are well depicted as the following equations (Wunder et al. 2011): 291 

𝑑𝑐4−𝑁𝑃

𝑑𝑡
= −𝑘𝑎𝑝𝑝 ∙ 𝑐4−𝑁𝑃 = −𝑘1 ∙ 𝑆 ∙ 𝑐4−𝑁𝑃                                (1) 292 

𝑘𝑎𝑝𝑝 =
𝑘∙𝑆∙𝐾4−𝑁𝑃

𝑛 ∙𝑐4−𝑁𝑃
𝑛−1 ∙𝐾𝐵𝐻4 ∙𝑐𝐵𝐻4

(1+(𝐾4−𝑁𝑃∙𝑐4−𝑁𝑃)𝑛+𝐾𝐵𝐻4 ∙𝑐𝐵𝐻4)
2                                     (2) 293 

where S is the total surface of all AuNPs, n is the Langmuir−Freundlich exponent and 294 

when using the classical Langmuir isotherm, the value of n is 1 (Gu et al. 2014). 295 

Another important parameter, which implies the catalytic activity, is the normalized rate 296 

constant (knor). It is associated with the amount of Au nanocatalyst and kapp, i.e.,  297 

knor = kapp/m.                                                        (3) 298 

With this respect, almost all of the researches demonstrate that Au dependent 299 

catalysis of nitroaromatics reduction is well accorded with the paeudo-first-order 300 
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kinetics; that is, the logarithm of absorption intensity of 4-NP (At) has a good linear 301 

correlation with reaction time (t), then kapp can be determined from the plot of Ln (At) 302 

vs t (Que et al. 2015, Ramirez et al. 2017). 303 

Ln (At/A0) = − kt                                                     (4) 304 

Interestingly, there are several evidences proved that the reduction of nitroaromatics by 305 

Au nanocatalysts may fit the zero-order kinetic model; i.e. the At rather than Ln (At) 306 

varies linearly with t (Gupta et al. 2014, Saha et al. 2009). They believe that this is due 307 

to the different rate-determining steps. Gupta et al.(Gupta et al. 2014) presented the six 308 

sequential electron transfer had critical role on this rate-limiting step. However, they 309 

did not provide any experimental data to support the speculation. While some studies 310 

considered that with the excess of both Au nanocatalysts and sodium borohydride 311 

(NaBH4), the reaction rate was the pseudo-first-order (Lee et al. 2008, Pozun et al. 312 

2013). In any case, there may be some other factors result in the different kinetic 313 

reaction, such as temperature, supports, concentration of reactants, etc. This should be 314 

further investigated. One relatively clear thing is that the group of Ballauff has 315 

demonstrated that the second step, i.e. the reduction of the 4-hydroxylaminophenol is 316 

the rate-determining step (Gu et al. 2014). The reduction of the 4-hydroxylaminophenol 317 

is involved in the route of reduction reaction, so it will be discussed in section 3.2. 318 

Please insert Fig. 1 319 

3.2. Route of reaction and possible mechanism 320 

The reductants type and effect on this reaction has been well introduced by Kadam 321 

and Tilve (Kadam and Tilve 2015). Hence, in this part we just discuss the reaction 322 
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triggered by H2 and borohydride. In order to understand the mechanism better, 323 

researchers begin paying their attention to the investigation of route of reaction since 324 

Haber proposed that there were two probable routes for reduction of nitroaromatics by 325 

Au nanocatalysts, which used H2 as the reductant to attack the nitro group to form 326 

corresponding amino group (Fountoulaki et al. 2014, Layek et al. 2012). One is the 327 

generally accepted direct route and another is the condensation route. In the direct route, 328 

the nitroso compounds are reduced firstly, and then the corresponding hydroxylamine 329 

is fast consecutively produced. Finally, the corresponding aniline derivatives are 330 

generated in the rate determining step (Fig. 2). The whole process is very fast and 331 

relatively simple. While in the condensation route, the azoxy compounds are 332 

synthesized after combining one molecule of nitroso compound and hydroxylamine 333 

respectively. The corresponding aniline derivatives can be obtained after a series of 334 

steps to azo and hydrazo (Fig. 2). Obviously, the condensation route is much more 335 

tedious. As the reaction of nitroaromatics reduction by Au nanocatalysts is always fast, 336 

some researchers are skeptical about this conclusion. Thus, confirmatory experiment 337 

has been proposed based on supported Au nanocatalysts. Corma et al.(Corma et al. 2007) 338 

elaborated on the reduction of nitroaromatics by Au/TiO2 catalyst and perfectly proved 339 

this reduction process followed the direct route. However, in these process, the 340 

reduction of nitroaromatics was proposed by H2 as the reductant, the process using 341 

NaBH4 is different. 342 

Please insert Fig. 2 343 

Based on the LH model, Layek et al.(Layek et al. 2012) proposed a probable surface 344 
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reduction mechanism making use of Nano Active™ Magnesium Oxide Plus (NAP)-345 

Mg–Au(0) catalyst for reduction of nitroaromatics by NaBH4 (Fig. 3). To verify the 346 

reaction pathway, possible intermediates were separately subjected to the reduction 347 

process. Results showed that the direct route including nitrobenzene → nitrosobenzene 348 

→ phenylhydroxylamine → aniline was the most possible route. In addition, the authors 349 

introduced that the possible reduction mechanism laid the foundation for the six 350 

electron transfer process. AuNPs reacted with borohydride ions to form an Au-H 351 

complex firstly. Then, the targets adsorbed on the surface of AuNPs and a hydrogen 352 

transfer occurred. Finally, the nitro group was reduced to amino group. In 2014, Gupta 353 

et al. (Gupta et al. 2014) proposed a six-electron transfer process between NaBH4 and 354 

nitrophenol compounds, but how did the electron transfer was not reported. Recently, a 355 

paper based on the magnetic Ni-Au/graphene nanocomposites introduced that the 356 

transition metal composited had the ability to catalyze hydrolysis of NaBH4 (Li et al. 357 

2017). The NaBH4 reacted with H2O to form activated hydrogen (H2) and then the 358 

metal-hydrogen species formed on the surface of catalyst. Finally, these active metal-359 

hydrogen species attacked 4-NP to reduce it. In conclusion, no matter reducing by H2 360 

or NaBH4, the critical step is the attack of –NO2 by hydrogen. AuNPs play important 361 

role to transfer and promote the attack. Recently, Wang et al.(Wang et al. 2017a) 362 

concluded the same route as Layek et al. for reduction of nitroarenes by SiO2-supported 363 

Au nanocatalyst. However, different results were proposed by Fountoulaki et al. 364 

(Fountoulaki et al. 2014), in which the nitrosoarene intermediates were skipped 365 

following the routes of nitroarene → aryl hydroxylamine → aniline. In addition, 366 
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Noschese et al. (Noschese et al. 2016) found that both the direct and condensation 367 

routes were possible on the basis of a nanoporous polymer matrix supported Au 368 

nanocatalyst, but the condensation route was preferred when the Au active sites were 369 

more accessible. 370 

Please insert Fig. 3 371 

Interestingly, when expose to the light, the catalytic mechanism changes. As 372 

described by Koklioti et al., (Koklioti et al. 2017) the presence of photoillumination 373 

yields an electron-hole pair, and therefore increases the density of active sites on the 374 

surface of Au clusters, resulting in enhanced catalytic performance for 4-NP reduction. 375 

There are three possible ways can cooperate to the reduction of 4-NP: i) common 376 

hydride transfer from Au-H bond both in the absence and presence of light; ii) specific 377 

hydride transfer by photoinduced Au-H bond; iii) active hydrogen generated via 378 

photoreduction of water (Fig. 4). In addition, the photogenerated electrons may also 379 

play an important role in the enhancement of catalytic performance. As introduced by 380 

a recent paper (Fu et al. 2017), under the exposure of visible light, electrons in the 381 

valence band of support were excited to the conduction band (CB), resulting in rapid 382 

electron transfer from CB of support to AuNPs. This makes AuNPs store abundant 383 

electron. With the continuously increasing of electron density, the Fermi level of them 384 

becomes more negative potential, thereby further improving the catalytic activity. 385 

Please insert Fig. 4 386 

As we all known, the reduction of nitroaromatics by Au based-nanocatalysts are 387 

almost proposed in aqueous medium at ambient temperatures because most of them use 388 
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NaBH4 as the resource of H2. However, the reaction proposed by other metal 389 

nanocatalysts such as nickel (Ni) based-nanocatalysts has been proceed in other 390 

medium. For example, Xia et al. (Xia et al. 2016) introduced a carbon black supported 391 

nano-Ni catalyst for reduction of 4-NP and compared the catalytic performance of it 392 

under different medium. The results showed that the catalyst exhibited higher activity 393 

in methanol than that in aqueous solution because the methanol-NaBH4 reaction system 394 

generated much more amount of H2 than the water-NaBH4 system. Inspired by this, we 395 

also investigated the effect of reaction medium by using methanol and ethanol as the 396 

medium and found that the generation of H2 was very less in these medium. We 397 

speculate this is because NaBH4 is less soluble in methanol and ethanol. In addition, 398 

the nitrophenol reduction in most cases is proceeded by nitrophenolate ion which is 399 

mainly prompted in aqueous medium. This also maybe the reason that most researchers 400 

have chosen the reaction in aqueous medium. Thus, the illustrated studies for reduction 401 

by Au nanocatalysts in this review are almost proposed using NaBH4 as the reductant. 402 

4. Reduction of nitroaromatics with free AuNPs: Size-dependent effect 403 

Free AuNPs for reduction of nitroaromatics have been investigated for many years. 404 

The study of catalysis by free AuNPs mainly focuses on the influence of size and 405 

synthetic method. Generally, the catalytic activity is enhanced for smaller size of 406 

AuNPs. But the catalytic activity is also related to the surface area and mass of particles. 407 

For example, Sau et al. (Sau et al. 2001) investigated the effect of particle size with the 408 

range of 10-46 nm under the same surface area and found that the catalytic rate of eosin 409 

reduction did not increase proportionately with the increase of size. It decreased first in 410 
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the size range of 10-15 nm and then increased with the size over 15 nm. Thus, we 411 

discussed the catalytic activity of free AuNPs by the synthetic methods and stated the 412 

size effect systematically. 413 

4.1. Extract of biomass stabilized free AuNPs 414 

  Bioreduction of metal ions in organism, such as plants, fungi, and bacteria is regarded 415 

as an eco-friendly, low cost, and highly efficient way and is important for biomedical 416 

application. Plants reduced AuNPs are mostly used in sensors, while Sharma et al. 417 

(Sharma et al. 2007) firstly reported plant-mediated AuNPs for directly reducing 4-NP. 418 

Unlike other biological methods, the synthesis of AuNPs by the stem extract of Breynia 419 

rhamnoides is very fast and the size of that can be tuned (Gangula et al. 2011). Recent 420 

researches for bioreduction of AuNPs used in catalysis primarily lie in the extract or 421 

some parts of them, including dextrose (Badwaik et al. 2011), mycelia (Narayanan and 422 

Sakthivel 2011), protein (Guria et al. 2016, Shi et al. 2015), and membrane-bound 423 

peptides (Srivastava et al. 2013) etc. Most of the results proved that the catalytic rates 424 

increased with the size decrease (Badwaik et al. 2011, Zhu et al. 2016). It is noteworthy 425 

that the size and shape controlled synthesis of AuNPs is always achieved a seed 426 

mediated grown approach by using some chemical agents. But a research reported by 427 

Das et al. (Das et al. 2012) has introduced a simple one-pot green method for 428 

biosynthesis of AuNPs and obtains super high catalytic rate for 4-NP reduction with the 429 

range of 8.6 × 104–2.6 × 106 min-1 by controlling the size and shape. The catalytic rate 430 

it achieved is much higher than the other methods (Table 1). Particularly, the increasing 431 
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catalytic rate can be induced by the decrease of the particle size which could be obtained 432 

by adjusting the HAuCl4–extract ratio. Except the size and biomass, the concentration 433 

of AuNPs play an important role in catalytic performance. As illustrated by Qu et al. 434 

(Shen et al. 2017b), the reaction rate constant was linearly related to the concentration 435 

of AuNPs, which resulted in an increase rate from 0.59 min-1 to 1.51 min-1 with the 436 

increasing AuNPs concentration of 1.46 × 10−6 to 17.47 × 10−6 mmol. 437 

4.2. Gel and other ligands stabilized free AuNPs 438 

Hydrogels, with tunable structure, are excellent carrier for easy aggregated 439 

nanoparticles, especially AuNPs (Kong et al. 2016). The obtained AuNPs-hydrogel 440 

nanocomposites have unique property of both metal NPs and hydrogels, which are 441 

appealing in terms of green catalysis (Wang et al. 2017c). For example, Zinchenko et 442 

al. (Zinchenko et al. 2014) prepared well dispersed and spherical AuNPs with small 443 

size of 2-3 nm by injecting the Au precursor into a DNA hydrogel, which allowed for 444 

the reduction of HAuCl4. The DNA hybrid hydrogel containing AuNPs provided highly 445 

catalytic activity in the reduction of 4-NP to 4-aminophenol (4-AP) with kapp of 0.09 446 

min-1. Some biocompatible molecules such as chitosan can be prepared as hydrogel. 447 

However, AuNPs are difficult to reduce by this system. Hence, an in-situ 448 

photoreduction method for producing AuNPs in chitosan-AuIII hydrogel system was 449 

reported (Wu et al. 2015b). In particular, this strategy had good catalytic performance 450 

for reduction of 4-NP to 4-AP with following a pseudo-first-order kinetics. 451 

Cetyltrimethylammonium bromide (CTAB), a well-known surfactant, can be used as 452 
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a stabilizer for AuNPs synthesis (Li et al. 2014). CTAB stabilized AuNPs were 453 

successfully fabricated for reduction of 4-NP and demonstrated an intermediate size (13 454 

nm) of AuNPs exhibited highest reaction rate, which was 60 times higher than the 455 

biggest one (56 nm) (Fenger et al. 2012). Generally, smaller AuNPs propose higher 456 

catalytic performance, while the intermediate size of AuNPs are more active than the 457 

seeds AuNPs (Nigra et al. 2013). This might be due to the convergence of increasing 458 

surface area of AuNPs versus the size of molecule and charge transfer during the 459 

reduction process. Besides, seeds AuNPs were too small to efficiently absorb 4-NP. The 460 

adsorption process of nitroaromatics was accompanied by a significant charge-transfer 461 

from the surface of AuNPs to the N-atom of nitroaromatics. Thus, the charge-transfer 462 

played very important role in reduction of nitroaromatics by Au nanocatalysts. The 463 

mechanism of this process needs to be further investigated in the future. In conclusion, 464 

reducing AuNPs by biomass is fast and green. The size of them can be controllably 465 

varied (Gangula et al. 2011). 466 

Please insert Table 1 467 

5. Reduction of nitroaromatics with supported AuNPs: Structure-dependent effect 468 

Easy aggregation of free AuNPs results in much loss of catalytic activity, so 469 

researchers tend to anchor them on the carrier to retain the catalytic activity and 470 

recyclability of AuNPs. The supports, including polymer, oxide, carbon, as well as the 471 

combination of them, have been well developed to anchor AuNPs with good dispersion, 472 

large loading amount, and narrow size distribution. In this part, we discuss some critical 473 

and new studies developed recently, concerning different carrier supported Au 474 
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nanocatalysts (Table 2-5). 475 

5.1. Polymer 476 

The research on polymer supported AuNPs mainly follows three directions: i) 477 

different shapes which provide different active sites; ii) different kinds of polymers 478 

which offer different ligands or functional group; iii) different synthetic routes of 479 

supported Au nanocatalysts which achieve several sizes of AuNPs. Different shapes of 480 

polymer, e.g. dendrimer, brushes, beads, micelles, nanotubes, flowers, and stars are 481 

used for synthesis of supported Au nanocatalysts (Table 2). In the early years, most of 482 

these structures preferred to make AuNPs encapsulate into the polymer networks, rarely 483 

on outside, which restricted the contact between nitroaromatics and AuNPs in some 484 

degree (Wang et al. 2007). Interestingly, Haruta and co-workers (Kuroda et al. 2009) 485 

developed a deposition reduction method that directly deposited AuNPs on the surface 486 

of poly(methyl methacrylate) (PMMA) beads with 6.9 nm average size of AuNPs. This 487 

reported Au nanocatalysts provided a highest rate constant of 0.432–0.474 min−1 among 488 

ever reported Au/polymers catalysts. In addition, this report proposed the importance 489 

of moderate interaction between polymer supports and AuNPs, which indicates the 490 

structure-dependent effect. Hence, many research groups have concentrated their 491 

attention on deposition sites of AuNPs and structure of polymers. For example, Qiu et 492 

al. (Qiu et al. 2012) successfully prepared an efficient electrocatalyst, polypyrrole 493 

nanotube (PPyNTs)-supported AuNPs, for catalytic reduction of 4-NP. Hu et al. (Hu et 494 

al. 2017) carried out a hyperstar polymer–Au25(SR)18 nanocomposite for 4-NP 495 



24 

 

reduction using hyperbranched copolymers as macroinitiators to polymerize the 496 

polymer. This obtained hyperstar-Au25(SR)18 catalyst showed great stability and 497 

convenient recovery and could be reused without losing any catalytic efficiency. 498 

Please insert Table 2 499 

Some polymers, such as poly(amidoamine), poly(propyleneimine), poly(2-500 

(dimethylamino) ethyl methacrylate) (PDMAEMA), and poly(glycidyl methacrylate), 501 

etc., are well reported for reducing and stabilizing AuNPs. Most interests concern the 502 

catalytic performance of different polymers supported AuNPs, but speculation is 503 

starting concerning the reactions between AuNPs and the ligands of polymer. For 504 

instance, Zeng et al. (Zeng et al. 2013) developed a polydopamine (PDA)-encapsulated 505 

magnetic microspheres supported Au nanocatalyst for catalytic reduction of 506 

nitrobenzene on the basis of interaction between PDA and AuNPs. The strong 507 

combination of AuNPs and –NH2 of PDA made AuNPs be well reduced and dispersed. 508 

It is reported that some ligands such as –SH, –NH2, –OH, etc., have an effect on the 509 

properties of AuNPs surface, thus affecting the available free active sites (Ansar and 510 

Kitchens 2016, Menuel et al. 2016). In addition, the catalytic performance is 511 

significantly related to the loading amount of AuNPs. Chen group demonstrated a 512 

raspberry-like polymer composite sub-microspheres with tunable AuNPs coverage for 513 

4-NP reduction (Liu et al. 2013). The results indicated this model reaction followed the 514 

pseudo-first-order reaction kinetics, but the study of kinetics was probably 515 

oversimplified. Therefore, they further developed this mechanism and investigated the 516 

effects of many factors (Fig. 5) (Li and Chen 2013). 517 
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Please insert Fig. 5 518 

Deposition of AuNPs on polymer is important for synthesizing well dispersed Au 519 

nanocatalysts. There are two routes for depositing AuNPs on polymer, the direct one 520 

and indirect one. The two routes are all based on the formation of polymer supported 521 

core-shell structure or brushes. The direct one deposits AuNPs on polymer carrier using 522 

NaBH4 or other weak reducing agent. The ligands or functional groups of polymer 523 

molecules play very important role in the formation of well-dispersed AuNPs by 524 

electrostatic conjunction of the negatively charged AuCl4
− or positively charged 525 

Au(en)2
3+. Thus the Au precursor salts should be chosen selectively. For example, Chen 526 

et al.(Chen et al. 2014a) reported a smart hybrid system that AuNPs were absorbed by 527 

SiO2@PDMAEMA carrier and reduced by NaBH4. Recently, 528 

polystyrene/polyaniline/Au (PS/PANI/Au) composites were fabricated based on the 529 

electrostatic attraction between positively charged Au(en)2
3+ and sulfonated PS 530 

particles (Sun et al. 2017). The sulfonated PS particles can absorb more Au(en)2
3+, 531 

hence enhancing the amount of loaded AuNPs and exhibiting excellent catalytic 532 

performance with kapp of 3.5196 min-1. Another way of depositing AuNPs on the carrier 533 

is AuNPs are prepared firstly by Frens or Brust methods, the definite sizes of AuNPs 534 

are absorbed by some ligands such as –SH and –NH2 subsequently (Liu et al. 2013). 535 

This route provides tunable loading amount of AuNPs by changing the pH of solution 536 

and concentration of polymer and AuNPs. In addition, the catalytic performance can be 537 

adjusted by using different size of AuNPs, which opens a new sight in reduction of 538 

nitroaromatics by Au nanocatalysts. 539 
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5.2. Oxides for lots of materials 540 

5.2.1. SiO2 541 

SiO2, a kind of very stable porous material, has been demonstrated as an ideal 542 

nonmetallic oxide support for encapsulation of metal NPs due to the confinement effect, 543 

offered by their unique properties of mesoporous channels structure, good thermal, and 544 

chemical stability (Xie et al. 2015, Zhao et al. 2016b). The way of encapsulated AuNPs 545 

in SiO2 for nitroaromatics reduction can be divided into three channels: i) AuNPs are 546 

confined by SiO2 to form yolk-shell or core-shell structure Au nanocatalyst, where SiO2 547 

is a microsphere; ii) AuNPs are deposited on the inside or outside the surface of SiO2 548 

nanotubes (SNTs); iii) AuNPs are embedded on the surface of SiO2 microsphere (Fig. 549 

6). 550 

Please insert Fig. 6 551 

SiO2 is always formed by a sol-gel process using tetraethyl orthosilicate (TEOS) as 552 

silica source. This procedure can be used in synthesizing Au@SiO2 yolk-shell or core-553 

shell structure. With this respect, Lee et al. (Lee et al. 2008) introduced a nanoreactor 554 

framework for 4-NP reduction using Au@SiO2 yolk-shell catalyst. The prefabricated-555 

AuNPs were firstly coated by the shell thickness of SiO2 through TEOS undergoing 556 

hydrolysis. Then the Au cores were selectively etched by different concentration of 557 

KCN, which provided different sizes of AuNPs. Thus the rate constants varied as the 558 

size of Au core changes. This designed framework was easily separated and dispersed 559 

and served as an efficient platform for nitroaromatics reduction. Different with this 560 
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strategy, Huang et al. (Huang et al. 2009) reported a similar strategy confining AuNPs 561 

in SiO2 shell, but the etched one was SiO2 rather than Au core. In this case, each sphere 562 

only contained one AuNP. AuNP presented anywhere inside the hollow zirconia sphere, 563 

which allowed 4-NP access the active sites of AuNPs easily, thus further enhancing the 564 

catalytic performance. Similar with this design, a new core–shell Au@resorcinol–565 

formaldehyde nanosphere based on multiple Au cores have been reported by Chen et 566 

al. (Chen et al. 2014b) This catalyst exhibited uniform pore size (2.5 nm) of SiO2 hollow 567 

nanospheres and good catalytic performance for 4-NP reduction with a reaction rate 568 

constant 0.08 min-1. The conversion percentage retained 94% after five cycles. 569 

SNTs, providing a high surface area to volume ratio, are deemed as potentially good 570 

candidates for Au nanocatalyst supports. The deposited AuNPs onto the inside surface 571 

of SNTs are usually dispersed within the mesopore channels (Zhang et al. 2011b). 572 

Therefore, the pore diameter of SNTs should be big enough to accommodate 573 

encapsulated AuNPs and transit the reactant molecules. In addition, the loading amount 574 

of AuNPs has a great impact on the catalytic performance. A paper reported recently 575 

demonstrated that higher of the catalyst loading, the reaction time was faster (Miah et 576 

al. 2017). In this case, The kapp increased from 0.2187 to 2.587 min-1 with the increase 577 

of Au loading from 0.033 to 0.167 g L-1 (Miah et al. 2017). Except for loading amount, 578 

other factors such as interaction between Au and supports, sites where AuNPs located, 579 

as well as reduction method are needed to further investigate (Xing et al. 2017). As 580 

shown in Fig. 7, two different synthetic methods of SiO2-confined Au nanocatalyst are 581 

proposed using calcine and grind, respectively. The calcined AuCS catalyst has much 582 
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bigger size of AuNPs than the ground one (AuAS), thus results in lower catalytic 583 

performance for 4-NP and methylene blue (MB) reduction. Additionally, the strong 584 

interaction between Au and support and well dispersed Au in AuAS are responsible for 585 

highly active in catalytic reduction. By limiting AuNPs in the shell or tubes, the 586 

recyclability can be obviously enhanced. 587 

Please insert Fig. 7 588 

Deposition AuNPs onto the outside of SNTs mainly uses the strong interaction 589 

between AuNPs and some ligands, such as –SH and –NH2 (Jan et al. 2011). For example, 590 

Lin et al. (Lin et al. 2012) prepared an amino groups-functionalized SNTs supported 591 

Au nanocatalyst for 4-NP reduction. Amino groups were served as active sites to host 592 

more AuNPs. Different with the deposition AuNPs onto inside or outside of the SiO2 593 

support, Cao et al. (Cao et al. 2016) carried out raspberry-like Au/SiO2 nanocomposite 594 

particles, in which AuNPs were half-embedded in the porous SiO2, towards reduction 595 

of 4-NP (Fig. 8). This structure not only offered a good morphological stability, but 596 

displayed a good catalytic activity and recycling performance, which remained 95% 597 

conversion of 4-NP after five cycles. Most importantly, hydrazinium hydrate with two 598 

amino groups was used to reduce HAuCl4 and the organic ligands were removed 599 

through heating. 600 

Please insert Fig. 8 601 

Please insert Table 3 602 
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5.2.2. TiO2 603 

Embedding AuNPs on metal oxide supports is an efficient way to immobilize AuNPs, 604 

which shows high activity and efficiency for nitroaromatics reduction. Metal oxides-605 

supported Au nanocatalysts have gained increasing scientific interest because of the 606 

high activity to a variety of chemical reactions as heterogeneous catalysts (Sinatra et al. 607 

2015, Zhou et al. 2018b). The nature of oxide supports plays an important role in the 608 

catalytic properties of supported Au nanocatalyst. It may limit the stabilization, activity, 609 

and catalytic efficiency because of the metal-support interface (Boronat and Corma 610 

2010). Thus, the interaction between AuNPs and supports should be considered 611 

cautiously in order to maximize the synergetic effects. 612 

Although Au nanocatalysts have an efficient catalytic activity for nitroaromatics 613 

reduction, most of them do not have the ability of chemoselective reduction. It has been 614 

reported that TiO2 supported Au nanocatalysts have unique behavior for chemoselective 615 

reduction of nitroaromatics (Corma and Serna 2006, Tamiolakis et al. 2013). This is 616 

because the cooperative effect between Au and TiO2 makes many very specific 617 

adsorption sites present at the boundary between Au and TiO2 (Lai et al. 2016). During 618 

adsorption, H2 is dissociated on Au and nitroaromatics are adsorbed selectively on the 619 

catalysts via nitro groups only, thus allows highly selective reduction (Boronat et al. 620 

2007). The particle size of AuNPs plays a dominant role in determining the catalytic 621 

activity for nitroaromatics reduction (Wain 2013). However, different synthetic 622 

methods of supported Au nanocatalysts have a great influence on the size of AuNPs. In 623 

order to obtain highly active TiO2-AuNPs catalyst, Damato et al. (Damato et al. 2013) 624 
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introduced a two-step polyol approach to prepare size-controlled TiO2-AuNPs catalyst 625 

through step-by-step reduction. This strategy successfully reduced different size of 626 

AuNPs about 12, 20, and 25 nm and obviously increased in catalytic activity. 627 

  Studies have reported that the substrate defects of TiO2 could stabilize AuNPs (Chen 628 

and Goodman 2006, Yang et al. 2008). Furthermore, AuNPs prefer to nucleate at the 629 

surface defects, especially step edges and oxygen vacancies. Significantly, under 630 

appropriate conditions, defect sites on the surface of TiO2 can be produced (Barrett et 631 

al. 2016). Hence, TiO2 is well developed for stabilizing AuNPs and improving the 632 

catalytic activity. In this case, Wang et al. (Wang et al. 2016) introduced an efficient 633 

strategy for fabricating highly selective Au nanocatalyst in reduction of nitroaromatics 634 

by positioning AuNPs on the edge/corner sites of TiO2 (Fig. 9). Results showed that 635 

AuNPs loaded on the edge/corner sites considerably enhanced the catalytic activities. 636 

The catalytic activities were much higher than the conventional Au-TiO2 catalysts. 637 

Although the selectivity and activity are enhanced by TiO2 supported Au nanocatalyst, 638 

the yields of desired anilines are still low and needed to improve. In very recent, they 639 

further proposed that the conversion of nitroarenes could be as high as 99.5% when 640 

using Sn decorate the Au/TiO2 catalyst (Wang et al. 2018b). This research illustrated 641 

that the Sn–O–Ti linkage promoted the formation of oxygen vacancies on TiO2, which 642 

resulted in the high activity and selectivity for metal catalysts (Fig. 10). In addition, 643 

AuNPs were necessary for the formation of anilines because the AuNPs/support 644 

interface could only reduce nitrosobenzene from nitrobenzene. This strategy 645 

theoretically reveals the peculiarity of hydrogenation of nitrobenzene on the Sn-O-Ti 646 
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interface and may open the door to highly selective hydrogenation of biomass. 647 

Please insert Fig. 9 648 

Please insert Fig. 10 649 

5.2.3. Other metal oxides 650 

Other metal oxides, such as MgO (Layek et al. 2012), Al2O3 (Shimizu et al. 2009), 651 

and Fe3O4 (Ge et al. 2008), have been well used as supports for stabilizing AuNPs to 652 

prevent aggregation. Most of them have a role in stabilizing free AuNPs and have a 653 

synergistic effect with AuNPs for providing more active sites (Chaplin et al. 2006, Han 654 

et al. 2017, Song et al. 2015). Nevertheless, the recyclability of AuNPs from many 655 

supports-containing systems is very difficult and also hinders the monitoring process 656 

of catalytic reaction by UV-vis spectrophotometer because of the presence of suspended 657 

NPs in reaction solution (Lee et al. 2010). As a consequence, pursuing for efficient 658 

separation technique to improve the efficiency is very important. Interestingly, as a 659 

magnetic metal oxide, Fe3O4 has the properties of high-surface-area and accessibility, 660 

thereby possessing the advantages of being magnetically recoverable and low-cost 661 

(Chang and Chen 2006, Long et al. 2011, Xu et al. 2012a, Yu et al. 2005). In this manner, 662 

Chen et al. (Chang and Chen 2009) fabricated a novel magnetically recoverable Au 663 

nanocatalyst for 4-NP reduction by adsorption-reduction of Au3+ ions on chitosan-664 

coated Fe3O4. Results showed that the catalyst was well separated and did not need 665 

either solvent swelling before or catalyst filtration after the reaction. 666 

  Different heterostructures of AuNPs-Fe3O4 exhibit different catalytic activity toward 667 
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nitroaromatics reduction. For instance, the flower- and dumbbell-like AuNPs-Fe3O4 668 

heterostructures were prepared (Lin and Doong 2017). They both exhibited bifunctional 669 

properties with excellent catalytic activity and high magnetization. However, the 670 

dumbbell-like heterostructure suggested much more obvious catalytic performance 671 

than the flower-like heterostructure with the pseudo-first-order rate constants of 0.63-672 

0.72 min-1. Substantially, the catalytic activity can be further enhanced using AuNPs-673 

Fe3O4 heterostructures. Indeed, a paper reported by Chen et al. (Zheng et al. 2013) has 674 

well demonstrated this. Generally, Fe3O4 is used as magnetic core, which is coated with 675 

SiO2. AuNPs are loaded on the Fe3O4-SiO2 magnetic nanospheres through Sn2+ linkage 676 

and reduction (Fig. 11). In the case of this design, the catalytic performance is improved 677 

with a rate constant of 0.85 min-1. Additionally, it provides convenient magnetic 678 

separation and good reusability with a stable conversion of 91% after six cycles. 679 

Please insert Fig. 11 680 

  AuNPs have attracted wide attention and have been widely used in photocatalytic 681 

field, especially in the oxidation reaction, because of its SPR property, which provides 682 

strong absorption capacity of visible light (Si et al. 2016, Yang et al. 2015, Yang et al. 683 

2014b). When combing with some semiconductors, the catalytic activity of the catalysts 684 

can be changed (Yang et al. 2016b, Zhang et al. 2018). Thus, some reports investigated 685 

the reduction of nitroaromatics by Au nanocatalysts under light illumination and 686 

compared the catalytic activity in the presence and absence of light. For example, Liu 687 

et al. prepared an Au-loaded Na2Ta2O6 nanocomposite photocatalyst for 4-NP reduction 688 

and prepared the catalytic activity in the dark and under visible and solar light 689 
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irradiation (Liu et al. 2017b) (Fig. 12). In the dark, AuNPs only acted as an 690 

electrondonor and provided active sites for the reaction. While under visible light 691 

irradiation, the strong SPR of AuNPs exited electrons, more excess activated electrons 692 

were produced, which promoting the catalytic performance. Different with the reaction 693 

process under visible light irradiation, the Na2Ta2O6 was be easily excited and generated 694 

plenty of free electrons under UV-light irradiation. These electrons then transferred 695 

from the CB of Na2Ta2O6 to the surface of AuNPs, which decreased the recombination 696 

rate of charge carriers, the catalysis was further enhanced. Thus, under the irradiation 697 

of solar light, the SPR promotion and charge transfer promotion were responsible for 698 

the high catalytic activity and the catalytic activity was 2.35 times higher than in the 699 

dark. This design also showed good stability and reusability. Similar with this 700 

investigation, other Au-based nanophotocatalysts like silica@apatite@Au composites 701 

(Chen et al. 2018), apatite@Au composite nanosheet spheres (Wang et al. 2018c), and 702 

TiO2/Au/CNTs catalyst (Xiang et al. 2014) have been developed for nitroaromatics 703 

reduction under light irradiation. Thus, the catalytic activity for nitroaromatics 704 

reduction can be improved by combining the AuNPs and some semiconductors. 705 

However, not all of the semiconductors have this function. The band potential of 706 

semiconductors should be matched with the Fermi energy of AuNPs, namely the CB of 707 

semiconductors should be higher in energy than the Fermi energy of AuNPs, making 708 

the direct transfer of electrons from semiconductors to AuNPs. More works would be 709 

proposed in the future. 710 

Please insert Fig. 12 711 
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5.3. Carbon materials 712 

5.3.1. Porous carbon 713 

Carbon-based materials are well known as promising candidates for Au catalytic 714 

carriers owing to the characteristic properties of high specific surface area, wonderful 715 

mechanical stability, and unique electrical property (Huang et al. 2017b, Yi et al. 2018, 716 

Zhang et al. 2016). Carbon-based materials with tailored pore sizes can encapsulate 717 

AuNPs inside its pores and leave enough space for reactant passing. Thereby AuNPs 718 

are highly dispersed in porous carbon and the porous carbon-encapsulated Au 719 

nanocatalysts provide high efficient catalysis for nitroaromatics reduction with good 720 

recyclability (Guo and Suslick 2012). MC has been done to disperse AuNPs on it to 721 

prevent aggregation and improve the catalytic activity (Wang et al. 2013). AuNPs 722 

occupy both the adjacent pore walls and pore channels, but do not penetrate the walls 723 

(Wang et al. 2015b). In addition, MC can serve as both carrier and adsorbent for 724 

stabilizing AuNPs and adsorbing reactants, respectively. MC with some electron 725 

withdrawing groups, such as -COOH and C=O groups, promotes the catch of 4-NP, 726 

which exhibits high efficiency to remove 4-NP (Guo et al. 2016). 727 

One of the advantages of carbon carriers is the electron-rich ability (Liang et al. 2017, 728 

Zhang et al. 2011a). When linked with AuNPs, the synergistic effect between carbon 729 

and Au makes excellent catalytic activity for nitroaromatics reduction. The large 730 

surface area of carbon nanomaterials possess high absorption of organic compounds via 731 

π-π stacking interactions, hence increasing the opportunity to access nitroaromatics and 732 
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AuNPs (Geim 2009, Wu et al. 2017). In this case, a electrospun carbon nanofibers 733 

(CNFs) supported Au core–shell catalyst is fabricated for 4-NP reduction (Zhang et al. 734 

2013). Nitric acid, hydrochloric acid and SnCl2 treated CNFs with rich –OH can reduce 735 

and form small size of AuNPs. More 4-NP is absorbed on catalyst through π-π stacking 736 

interactions. The electron transfer between CNFs and AuNPs obviously facilitates the 737 

uptake of electrons by 4-NP molecules, further improving the catalytic efficiency. It 738 

could also be easily recycled for reuse. Distinct from CNFs loaded Au nanocatalyst, 739 

AC expresses surface oxygen-containing functionalities, which act as AuNPs anchoring 740 

sites, promote the reduction of AuNPs, lower hydrophobicity of Au nanocatalyst and 741 

enhance catalyst accessibility during synthesis (Cárdenas-Lizana et al. 2015, 742 

Rodríguez-Reinoso 1998). The ultimate goal is to obtain highly efficient Au-based 743 

nanocatalyst for nitroaromatics reduction. Nevertheless, the size of AuNPs is needed to 744 

decrease in some case. 745 

5.3.2. Graphene 746 

  GR, consisting of single-layer and sp2-hybridized carbon lattice with excellent 747 

electrical, thermal, and mechanical properties, has been extensively employed as a 748 

promising support for Au nanocatalysts (Deng et al. 2013, Liu et al. 2015, Novoselov 749 

et al. 2004, Yang et al. 2016a, Zhang et al. 2015). GR as a support for the Au 750 

nanocatalysts can improve the conductivity, provide more active sites, and exhibit 751 

synergistic effect between AuNPs and GR, which promote the absorption of targets via 752 

π-π stacking interaction (Liu et al. 2015, Ying et al. 2017). The catalytic efficiency can 753 
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be further improved. For example, a cylindrical piece of AuNPs/GR hydrogel has been 754 

synthesized using DP method and illustrates excellent catalytic performance for 4-NP 755 

reduction, which is about 14 times larger than the PMMA supported AuNPs mentioned 756 

above (Li et al. 2012). The details of these results are shown in Table 4. In recent, the 757 

development tendency of GR-supported Au nanocatalysts is diversification and high 758 

efficiency. Maji and Jana (Maji and Jana 2017) synthesized a two-dimensional GR and 759 

mSiO2 supported AuNPs (RGS@AuNPs hybrid) for simultaneous reduction of 4-NP 760 

and photo-degradation of MB dye. Graphitic carbon nitride (g-C3N4), a sustainable and 761 

environmentally friendly metal-free semiconductor which possessing a GR-like two 762 

dimensional crystalline structure, is regarded as innovative photocatalytic material 763 

(Jiang et al. 2017, Qiu et al. 2018, Vidyasagar et al. 2018, Wang et al. 2017b, Zheng et 764 

al. 2016, Zhou et al. 2018a). There are a few researches mentioned it had highly 765 

contribution to nitroaromatics reduction, while a recent paper reported the Au/g-C3N4 766 

concerted contact system was highly efficient for reduction of 4-NP to 4-AP (Fu et al. 767 

2017). Furthermore, under visible light irradiation, the catalytic efficient was largely 768 

enhanced owing to the charge-transfer effect induced by strong interaction between 769 

AuNPs and g-C3N4. 770 

Please insert Table 4 771 

5.4. Multi-metal alloy or doping 772 

Another important typical design for the application on nitroaromatic reduction by 773 

Au-based nanocatalysts is in conjunction with other metal NPs e.g. Pt, silver (Ag), Ni, 774 

and palladium (Pd), which all have wonderful catalytic performance for chemical 775 



37 

 

reactions (Gong 2012, He et al. 2017). It is reported that AuNPs alloy or combine with 776 

other transition metals to form multi-metal NPs can potentially lead to higher catalytic 777 

activity as compared to monometallic NPs (Zhang et al. 2014b). Hammer−Nørskov 778 

model identifies that the synergistic effect induced by multi-metal NPs catalysis is 779 

mainly due to the d -band of metal surface, which is the controlling factor in 780 

chemisorption strength (Pozun et al. 2013). Introduction of another metal NPs results 781 

in geometric and electronic effects with structure changes (Tuo et al. 2015). With this 782 

respect, many wonderful reports have been published for nitroaromatics reduction by 783 

Au-based multi-metal NPs. 784 

AuNPs served as core or shell combine with Ni (Le et al. 2014), Pd (Qian et al. 2014), 785 

and Ag (Jayabal and Ramaraj 2014) to form dandelion- and volcano-like structures for 786 

highly efficient reduction of nitroaromatics. The bimetallic structure effects are 787 

responsible for providing more active sites and exhibiting maximum catalytic activity 788 

(Pretzer et al. 2016). Furthermore, the catalytic activity is improved not only by a multi-789 

metallic system, but also by making porous structures (Sahoo et al. 2015). Interestingly, 790 

in order to improve the catalytic performance of mono-AuNPs, Godfrey et al. (Godfrey 791 

et al. 2017) prepared an Au@Ag@Au (core@shell@shell) structure using the 792 

sequential citrate reduction technique. This structure provided a second Au−Ag 793 

interface. The extended X-ray absorption fine structure analysis suggested that this 794 

structure exhibited an increased proportion of bimetallic interactions and indicated 795 

higher catalytic activity than the Au@Ag structure. 796 

The new trend of multi-metal NPs-based catalysts towards nitroaromatics reduction 797 
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lies upon loading multi-metal NPs on other supports mentioned above, such as metal 798 

oxide and carbon materials. The metal oxide used as carrier mainly have TiO2 with 799 

corner or edges effect to improve the chemoselectivity and Fe3O4 with excellent 800 

magnetism to separate easily (Boronat and Corma 2010). Particularly, Shen et al. (Shen 801 

et al. 2017a) synthesized multifunctional Fe3O4@TiO2@Ag-Au microspheres by 802 

incorporating Au-Ag bimetallic nanostructures onto the Fe3O4@TiO2 microspheres, 803 

which significantly increased the ‘hot spot’ effect, thereby offering stronger 804 

electromagnetic field enhancements (Fig. 13). 805 

Please insert Fig. 13 806 

  Benefiting from the high conductivity and tremendous surface area, GO is widely 807 

used as carrier for multi-metal NPs based catalyst. The connection between GO and 808 

substrate molecules relies on non-covalent bonding interactions such as hydrogen 809 

bonding, hydrophobic π-π stacking, and electrostatic interactions (Rout et al. 2017). GO 810 

can reduce metal precursors to form a stable suspension of metal NPs/GO without any 811 

reducing agent or surfactant (He et al. 2014). Depending on the design of Au-Pt 812 

NPs/GO structure, the catalytic activity for 4-NP reduction is significantly enhanced 813 

with kapp of 0.228 min-1, which is about 12-fold and 5-fold higher than the value of 814 

homemade AuNPs (0.018 min−1) and commercial Pt black (0.042 min−1) (Lv et al. 815 

2015). Moreover, the electron-enhanced effect of RGO support and strong synergistic 816 

effect between noble metal NPs play a significant role in long-life stability and excellent 817 

catalytic performance (Li et al. 2017). Recently, our team has reported a Pd/Au 818 

bimetallic NPs-loaded g-C3N4 nanosheet for highly efficient catalytic reduction of 4-819 
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NP. The average diameter around 8 nm of Pd/Au NPs are homogeneously dispersed on 820 

the surface of support, which proposed special p-bonded planar structure and large 821 

surface area (Fang et al. 2017). The comparison of different parameters of Au-based 822 

multi-metal NPs for nitroaromatics reduction is shown in Table 5. 823 

Please insert Table 5 824 

6. Reduction of nitroaromatics with non-spherical AuNPs: Shape-dependent effect 825 

6.1. Polyhedral Au nanocrystals 826 

The catalytic efficiency of Au nanocatalysts not only depends on the particle 827 

structure and size, but also on the shape (Cao et al. 2001, Nehl and Hafner 2008). 828 

Different shapes of AuNPs have diverse configuration, which provide various active 829 

sites, thus have a great impact on the catalytic activity. In early, most of studies 830 

concentrated on the synthetic method of different shapes of AuNPs (Rashid and Mandal 831 

2008). Conveniently, Premkumar et al. (Premkumar et al. 2011) fabricated different 832 

shapes of polyhedral AuNPs in high yield and investigated the effect on catalytic 833 

performance for shape distribution. Differently, a seed-mediated growth approach was 834 

employed by Chiu et al. (Chiu et al. 2012) to synthesize cubic, octahedral, and rhombic 835 

dodecahedral AuNCs. With this respect, they compared the catalytic activity toward 836 

NaBH4 reduction of 4-NP and found that rhombic dodecahedral AuNCs showed the 837 

highest reduction rate. 838 

6.2. Irregular Au nanocrystals 839 

Irregular AuNCs such as rods, flowers, cages, boxes, and stars have been introduced 840 

for reduction of nitroaromatics (Fig. 14). Nanorods with high surface area of hollow 841 

structures show enhanced optical sensitivity and catalytic activity when compared to 842 

Au spheres, nanorods, and hollow spheres (Khalavka et al. 2009). Loading Au nanorods 843 
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on the surface of carbon-coated magnetic nanoparticles (Fe3O4@C MNPs) further 844 

enhances the catalytic activity and exhibits wonderful recyclability and stability. 845 

Another factor affecting the catalytic activity is the thickness of the AuNCs wall. 846 

Compared the nanocages and nanoboxes, the kinetic data indicate that Au-based 847 

nanocages are catalytically more active due to the extremely thin but electrically 848 

continuous wall (Zeng et al. 2009). Also, the high content of Au and the accessibility 849 

of both outer and inner surfaces through the pores in wall are responsible for high 850 

efficient catalysis. 851 

It is reported that branched Au nanostructures can enhance the performance in many 852 

reactions (Guerrero-Martínez et al. 2011). In this case, some researchers investigate the 853 

catalytic activity of multibranched Au nanoantennas, nanostars, and nanoflowers 854 

(Soetan et al. 2016). The results showed that the efficient absorption of 4-NP on the 855 

surface of these shapes lied in the shorter protrusions. This is because there are (100) 856 

and (110) crystal planes on the shorter protrusions, where had high density of atomic 857 

steps and kinks, promoting higher catalytic activity for 4-NP reduction. Hence, it is very 858 

important to obtain Au nanocatalyst of crystal plane with high index facets. 859 

Please insert Fig. 14 860 

In conclusion, the nature of supports has a significant impact on catalytic 861 

performance of Au nanocatalysts. As for most polymer-supported Au nanocatalysts, the 862 

shapes of the catalyst can be controlled. Many of them can reduce AuNPs in situ by 863 

specific ligands without adding any reducing agent. But the catalytic activity and 864 

stability of AuNPs should be further improved. The oxide supported Au nanocatalysts 865 

like SiO2 can effectively overcome this because of the confinement effect. With this 866 

design, the recycle and stability of Au nanocatalysts are greatly enhanced with no Au 867 
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leaching. Other metal oxides as supports will form the synergistic effect with Au and 868 

the catalytic performance is improved because more active sites are provided. 869 

Interestingly, the catalysts are separated easily in the presence of some magnetic metal 870 

oxides (Gawande et al. 2014, Shokouhimehr et al. 2018). Nevertheless, the synthetic 871 

process is complex and the activity is easier to lose in air. The surface of carbon usually 872 

contains a large number of oxygen-containing groups, which benefits the deposition 873 

and stability of AuNPs. Some of them possess electron-rich ability and high absorption 874 

of organic compounds via π-π stacking interactions, hence increasing the opportunity 875 

to access nitroaromatics and AuNPs, improving the catalytic performance, and 876 

broadening the application of Au nanocatalysts, especially photocatalysis. Other new 877 

supports, such as membrane (Zhong et al. 2018), montmorillonite (Rocha et al. 2018), 878 

and molecular sieve (Kusumawati et al. 2018), have been developed and showed highly 879 

catalytic performance. The investigation does not just tend to some new supports, but 880 

to some new technology like photocatalysis in recent. 881 

7. Comparison with other metal catalysts 882 

  Except AuNPs, other metallic NPs including Pd (Shokouhimehr et al. 2013), Pt 883 

(Berillo and Cundy 2018), Ag (Wu et al. 2013), Cu (Pi et al. 2018), and Ni (Xia et al. 884 

2018) NPs have also been used for nitroaromatics reduction and the mechanism is 885 

similar to that of AuNPs. Just like AuNPs, these free metallic NPs are unstable and easy 886 

to aggregate. Accordingly, stabilized metal nanocatalysts are needed and desirable for 887 

nitroaromatics reduction (Kim et al. 2015, Shokouhimehr et al. 2014). Among these 888 
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well stabilized metallic nanocatalysts, Pd-based nanocatalysts always show the highest 889 

catalytic activity for nitroaromatics reduction, even higher than Au nanocatalysts 890 

(Deraedt et al. 2014, Shokouhimehr et al. 2018). This is because PdNPs have very 891 

strong adsorption for activated hydrogen, which is the rate-limiting step for 892 

nitroaromatics reduction (Durand et al. 2008). The catalytic activity is enhanced 893 

because of more activated hydrogen. While the rate-limiting step of Au nanocatalyt is 894 

the transfer ability of hydrogen to products. Even so, the high catalytic efficiency of Au 895 

nanocatalysts under low temperature is still significant. Simultaneously, the low 896 

toxicity of Au nanocatalysts is more suitable for practical application. 897 

Ag-based nanocatalysts have widely used in nitroaromatics reduction because of its 898 

much lower cost, high activity and selectivity (Ji et al. 2016). However, in most cases, 899 

the catalytic activity is not as high as Au nanocatalysts. Besides, the bactericidal ability 900 

and toxicity of Ag nanocatalyts cannot be ignored, which will be harmful for beneficial 901 

microbes and humans. The other metallic nanocatalysts like Cu and Ni nanocatalysts 902 

are very cheap and have also been reported for the reduction of nitroaromatics in these 903 

years (Xia et al. 2016, Xiao et al. 2016). But the chemical tolerance and catalytic 904 

activity of them are obviously not as good as Au nanocatalysts. In addition, CuNPs also 905 

show high propensity for oxidation, which may affect the catalysis. 906 

8. Conclusions, future outlook and challenges 907 

Efficient reduction of nitroaromatics into corresponding amines compounds has paid 908 

much attention. Au nanocatalysts can offer an efficient way because of the high 909 

catalytic efficiency under low temperature and specific size, synergistic, interfacial, and 910 
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shape effects. Due to the trends in size increase of AuNPs when sintering, several 911 

synthetic strategies of Au nanocatalyst are widely employed to suppress, including: i) 912 

immobilizing or depositing AuNPs on high-surface area substances; ii) encapsulating 913 

them in the channels or porous materials; iii) stabilizing them with surface bound 914 

ligands. Thus, new green and simple routes of Au nanocatalyst synthetic methods with 915 

large loading amount, highly dispersed AuNPs, and wonderful catalytic efficiency for 916 

nitroaromatics reduction are still needed. The future outlook and challenges are 917 

proposed as follows: 918 

i) Most of studies focus on the synthesis of highly efficient Au nanocatalysts for 919 

nitroaromatics reduction but ignore the reason for the high efficient. In addition, the 920 

combination of photocatalytic materials is a trend to improve the catalytic performance 921 

and energy saving, but the investigation on the mechanism of nitroaromatics reduction 922 

under light irradiation should be further developed. 923 

ii) Free AuNPs have high catalytic activity but are easy to aggregate. For this, supported 924 

Au nanocatalysts are development, but sometimes the recovery is still limited by 925 

unstably interfacial interaction between supports and Au. Thus, the design of core-shell 926 

or yolk-shell is a good choice. 927 

iii) For recycle, magnetic materials are usually used as a core to stabilize AuNPs and 928 

separate Au nanocatalyst easily, but the magnetic materials only act as a support. Some 929 

magnetic metal NPs with the ability to reduce nitroaromatics, such as Ni NPs, can be 930 

used to combine with AuNPs to enhance the catalytic performance by bimetallic 931 

synergetic effect. 932 
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iv) An alternative promising way to enhance the catalytic performance is the synthesis 933 

of irregular AuNPs or multi-metallic NPs owing to the edge and corner effects or 934 

synergistic effect. 935 

v) Most of works provide efficiently active catalysts, but few of them have been suited 936 

to the large-scale industrial use. Thus, synthesis of large-scale industrial used catalysts 937 

is needed to further develop.  938 

vi) New materials supported Au nanocatalysts present huge potential in environmental 939 

applications. Particularly, a productive way of AuNPs may be combination with other 940 

biocompatible materials deposited on different supports either in micro- and nanometer 941 

scales. In this manner, metal−organic frameworks system provides a good choice.  942 

vii) Most consideration of researchers is on reducing nitroaromatics in aqueous phase 943 

by NaBH4 solution, further investigation on other medium such as sediment and soil 944 

and organic solution is needed to consider. 945 

viii) It is reported that the surface electron density of AuNPs would be somewhat 946 

responsible for the catalytic property of some materials like TiO2 supported Au 947 

nanocatalysts (Yang et al. 2016a). The photo-induced electron transfer can further 948 

enhance the oxidability of Au nanocatalysts (Yang et al. 2014a). Thus, the electron 949 

behavior including electron transfer and density may have effect on the reduction also. 950 

In this case, the electron-dependent effect of Au nanocatalysts should be considered in 951 

the future work. 952 

ix) For further improvement of the catalytic activity, the single-atom catalyst is 953 

deserved to investigate. 954 
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Figure Captions 1692 

Fig. 1 Langmuir−Hinshelwood model for reduction of 4-NP by Au/Pt NPs catalysis. 1693 

Adapted with permission from ref.(Wunder et al. 2010) Copyright 2010 the American 1694 

Chemical Society. 1695 

Fig. 2. Mechanism illustration for direct and condensation route of nitroaromatics 1696 

reduction by Au nanocatalysts and H2. 1697 

Fig. 3 Reaction mechanism for reduction of nitroarene by (NAP)-Mg–Au(0) catalyst. 1698 

Adapted with permission from ref. (Layek et al. 2012) Copyright 2012 the Royal 1699 

Society of Chemistry. 1700 

Fig. 4 Mechanism illustration for reduction of 4-NP under the illumination of light. 1701 

Adapted with permission from ref. (Koklioti et al. 2017) Copyright 2012 the Royal 1702 

Society of Chemistry. 1703 

Fig. 5. Mechanism for reduction of 4-NP raspberry-like polymer supported Au 1704 

nanocatalyst. Adapted with permission from ref.(Li and Chen 2013) Copyright 2013 1705 

the Royal Society of Chemistry. 1706 

Fig. 6 Illustration of SiO2 supported AuNPs for nitroaromatics reduction. (A) Core-1707 

shell structure of encapsulating one or many AuNP; (B) AuNPs are deposited on the 1708 

inside or outside the surface of SiO2 nanotubes; (C) AuNPs are half-embedded or 1709 

combined on the surface of SiO2 microsphere. 1710 

Fig. 7 Synthetic process of (A) calcine reduced AuCS and (B) grind formed AuAS 1711 

catalysts. Adapted with permission from ref.(Xing et al. 2017) Copyright 2017 Elsevier. 1712 

Fig. 8 Mechanism of (A) preparation process and (B) formation mechanism of 1713 

raspberry-like Au/SiO2 nanocomposite particles. Adapted with permission from 1714 
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ref.(Cao et al. 2016) Copyright 2016 Elsevier. 1715 

Fig. 9. Absorption of nitrobenzene on TiO2 supported Au nanocatalyst with oxygen 1716 

vacancies. Adapted with permission from ref.(Wang et al. 2016) Copyright 2016 the 1717 

American Chemical Society. 1718 

Fig. 10. Enhanced activity and selectivity for nitrobenzene reduction by Sn decorated 1719 

M/TiO2 catalyst. Adapted with permission from ref.(Wang et al. 2018b) Copyright 2018 1720 

Nature. 1721 

Fig. 11. Photographic representation for (A) preparation of Fe3O4-SiO2 magnetic 1722 

nanospheres supported Au nanocatalyst and (B) in reduction of 4-NP using NaBH4. 1723 

Adapted with permission from ref.(Zheng et al. 2013) Copyright 2013 The Royal 1724 

Society of Chemistry. 1725 

Fig. 12. 4-NP reduction process (a) in the dark, (b) under visible light and (c) solar light 1726 

illumination. Adapted with permission from ref. (Liu et al. 2017b) Copyright 2017 1727 

Elsevier. 1728 

Fig. 13. Schematic for (A) fabrication, (B) SEM image, and (C) TEM image of 1729 

Fe3O4@TiO2@Ag-Au microspheres. Adapted with permission from ref.(Shen et al. 1730 

2017a) Copyright 2017 Elsevier. 1731 

Fig. 14. Figures and TEM images of Au nanocrystals with different shapes. (A) 1732 

Polyhedral and nanorods; Adapted with permission from ref.(Premkumar et al. 2011) 1733 

Copyright 2011 Springer. (B) flowers; Adapted with permission from ref.(Liu et al. 1734 

2017a) Copyright 2017 Elsevier. (C) cages; (D) boxes; Adapted with permission from 1735 

ref.(Zeng et al. 2009) Copyright 2010 the American Chemical Society. (E) stars. 1736 
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Adapted with permission from ref.(Ma et al. 2017) Copyright 2017 Multidisciplinary 1737 

Digital Publishing Institute.  1738 
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Tables 1772 

Table 1 Comparison of some typical strategies for reduction of 4-NP using free AuNPs 1773 

Type of 

composition 
Composition 

Particle 

size 

(nm) 

kapp 

(min-1) 

Concentration 

of catalyst (mM) 

knor 

(min-1 

mM-1) 

Ref. 

Bacteria 

stabilized 

AuNPs 

Breynia 

rhamnoides 
25 0.552 - - 

(Gangula et al. 

2011) 

Escherichia 

Coli bacterium 
10 0.210 - - 

(Badwaik et al. 

2011) 

Escherichia coli 

K12 
50 0.014 0.0042 3.33 

(Srivastava et 

al. 2013) 

Shewanella 

haliotis 
<10 0.654 0.005 130.8 

(Zhu et al. 

2016) 

Fungi 

Cylindrocladium 

floridanum 
25 0.027 0.0051 5.29 

(Narayanan 

and Sakthivel 

2011) 

Rhizopus oryzae 

protein extract 
5-65 

2.60 × 

106-

4.99 × 

105 

0.0101 

2.57 × 

108-

4.94 × 

107 

(Das et al. 

2012) 

Pycnoporus 

sanguineus 
6.07 0.066 0.019 mg 

3.47 

mg-1 

(Shi et al. 

2015) 

Fusarium sp. 

MMT1 strain. 
30.6 0.102 - - 

(Guria et al. 

2016) 

Trichosporon 

montevideense 
12 1.5 0.0015 1000 

(Shen et al. 

2016) 

Aspergillus sp. 

WL 

4.4 
9.8-

25.2 
0.58 

16.9-

43.45 

(Shen et al. 

2017b) 

28.4 10.6 3 3.53 
(Qu et al. 

2017) 

Gel 

DNA hydrogel 2-3 1.5 100 mg 
0.015 

mg-1 

(Zinchenko et 

al. 2014) 

Hydrogels - 2.6 0.005 520 
(Wu et al. 

2015b) 

Others 

CTAB 13 6 0.25 24 
(Fenger et al. 

2012) 

Olibanum gum 3±4 5.8 - - 
(Guadie Assefa 

et al. 2017) 

dimethyl 

sulfoxide 
15-40 5.4 - - 

(Bhosale et al. 

2017) 
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Table 2 Different shapes of typical polymer-supported Au nanocatalysts. 1775 

Shape Schematic Preparation procedure 
Particle 

size (nm) 
Ref. 

Dendrimer 

 

i. Graft dendrimer on the surface of silica; 

ii. Reduce AuNPs on dendrimer-modified 

silica by NaBH4; 

iii. Self-assemble with polyelectrolytes and 

remove silica cores. 

2.3 ± 0.8 

(Wu 

et al. 

2006

) 

Brush 

 

i. Functionalize SiO2 NPs with APTES to 

provide amino groups; 

ii. Graft PDMAEMA onto them with SIPGP; 

iii. Reduce AuNPs onto the PDMAEMA 

brushes. 

3.0 

(Che

n et 

al. 

2014

a) 

Bead 

 

i. Prepare AuNPs of different size using Frens 

method; 

ii. Immobilize prepared AuNPs into the resin 

beads. 

20 

(Pani

grahi 

et al. 

2007

) 

Micelle 

 

i. Synthesize block copolymer by ATRP; 

ii. Prepare core-corona micelles and micelle 

supported-AuNPs by NaBH4 reduction. 

2-4 

(Wan

g et 

al. 

2007

) 

Nanotube 

 

i. Synthesize PPyNTs by a self-degraded 

template method and ILS/PPyNTs; 

ii. Reduce AuNPs on the ILS/PPyNTs and by 

NaBH4 to form Au/ ILS/PPyNTs hybrids and 

Au/PPyNTs hybrids. 

5.7 

(Qiu 

et al. 

2012

) 

Flower 

 

i. Prepare BP; 

ii. Synthesize hybrid BP–AuNPs by  

deposition reduction approach; 

5.5 ± 1.7 

(Mat

sushi

ma et 

al. 

2012

) 

Star 

 

i. Synthesize MAOELP and microemulsion 

copolymerize inimer BIEM with it; 

ii. Prepare hyperstar polymer by 

polymerization; 

iii. Form HS-Au25(SR)18 nanocomposites via 

ligand exchange. 

- 

(Hu 

et al. 

2017

) 

APTES: 3-aminopropyltriethoxysilane; PDMAEMA: Poly(2-(dimethylamino) ethyl methacrylate); 1776 
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SIPGP: self-initiated photografting and photopolymerization; ATRP: atom transfer radical 1777 

polymerization; PS-PBIEM: polystyrene- polymerizing 2-(2-bromoisobutyryloxy) ethylmethacrylate; 1778 

PPyNTs: polypyrrole nanotubes; ILS: ionic liquids; BP: boronate microparticles; MAOELP: 2-1779 

methacryloyloxyethyl lipoate.  1780 
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Table 3 Details of different parameters and reaction conditions of oxides-based Au 1781 

nanocatalysts for 4-NP reduction 1782 

Catalyst 

type 

Particl

e size 

(nm) 

Amount 

of Au 

(µmol) 

Amount of 

NaBH4 (mmol) 

Amount of 

4-NP 

(µmol) 

kapp (10-3 

s−1) 

Reaction 

time 

(min) 

Recycle Ref. 

Au@SiO2 104-43 1.6 1.2 3400 14-3.9 60 - 
(Lee et al. 

2008) 

Au@hma-

ZrO2 
6.3 25 12000 6.8 5.17 12 4 

(Huang et 

al. 2009) 

AuNPs/S

NTs 
3-5 1 0.15 3.6 10.64 4.7 - 

(Zhang et 

al. 2011b) 

Au/SBA-

15 
2.5 

0.133 

g/L 
0.4 30 17.42 4 5 

(Miah et 

al. 2017) 

AuAS 3.9 0.8 g/L 0.04 0.1 2.92 24 5 
(Xing et 

al. 2017) 

Au@meso

-SiO2 
2.5 

0.05 mL 

0.0125 

wt% 

0.025 0.0625 1.33 20 5 
(Chen et 

al. 2014b) 

Au/TiO2 - 1.5 g/L 0.036 0.6 2.83 20 - 
(Li et al. 

2015) 

dumbbell-

like Au-

Fe3O4 

5 

2 mg 0.016 0.4 

10.5 5 

6 

(Lin and 

Doong 

2011) 
flower-

like Au-

Fe3O4 

10 6.33 6.67 

Fe3O4@Si

O2–Au 

MNCsb 

5 0.5 mg 0.2 0.25 14.2 4 9 
(Zheng et 

al. 2013) 

hma, hollow mesoporous; MNCsb, magnetic nanocomposites  1783 
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Table 4 Comparison of different carbon-supported Au nanocatalysts for reduction of 1784 

nitroaromatics 1785 

Catalyst Nitroaromatics Structure 

Particle 

size 

(nm) 

kapp 

(min-1) 

knor (s-1 

g-1) 
Ref. 

USP Au/C 4-NP Encapsulated 33 0.600 1500 
(Guo and Suslick 

2012) 

Au/GR 

hydrogel 

4-NP 
Gel 

14.6 0.190 31.7 
(Li et al. 2012) 

MB - 0.237 39.5 

CNFs@Au 4-NP 
Core–shell 

Nanofiber 
- 0.325 54.2 (Zhang et al. 2013) 

GO@NH2-Au 

NCs 
4-NP Nanosheets 

14.0 ± 

1.0 
2.136 2967 (Ju et al. 2014) 

Fe@Au-GO 
4-NP 

Core-shell 10-12 
0.121 - 

(Gupta et al. 2014) 
2-NP 0.120 - 

Au/AC m-dinitrobenzene Nanowhisker 4 2.100 - 
(Cárdenas-Lizana 

et al. 2015) 

Au/MC-O 4-NP Tube 10 0.465 0.1 (Guo et al. 2016) 

Au/mSiO2@R

GO 

4-NP Two-

Dimensional 

nanohybrid 

3-5 

0.900 37.5 
(Maji and Jana 

2017) MB 0.726 30.25 

Au/g-C3N4 4-NP - 2.6 0.479 7.99 (Fu et al. 2017) 

Polydopamine-

g-C3N4/Au 
4-NP - 25 3.084 10.28 (Qin et al. 2019) 

Fe3O4@Carbon 4-NP core-shell 15.9 5.34 89 (Gong et al. 2018) 
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Table 5 Details of different parameters of Au-based multi-metal NPs for nitroaromatics 1787 

reduction 1788 

Catalyst 
Molar 

ratio 
Structure Recycles Nitroaromatics 

kapp 

(min−1) 

knor (s−1 

g−1) 
Ref. 

Ni@Au/SiO2 5:1 
Core-shell 

dandelion 
- 

4-NP 0.498 307 (Le et al. 

2014) 2-nitroaniline 0.282 174 

PtAu alloy/CeO2 1:1 volcano - 4-NP 6.522 2.174 
(Zhang et 

al. 2014b) 

Au-Ag/SiO2 6:1 nanorods - nitrobenzene 0.405 - 

(Jayabal 

and 

Ramaraj 

2014) 

PCP@Au-Ag 1:1 Core-shell 6 4-NP 0.1722 144 
(Fu et al. 

2018) 

Au–Pd/GO 4.53:1 flower 6 4-NP - - 
(He et al. 

2014) 

PdAu/Fe3O4 1:1 rod 8 4-NP 0.328 4.84 
(Tuo et al. 

2015) 

Pt–Au 

/PDA@RGO 
3:1 dendrimer 6 4-NP 0.575 1700 

(Ye et al. 

2016) 

Fe3O4@TiO2@A

g-Au 
1:1 Core-shell 8 4-NP 0.115 3406.44 

(Shen et 

al. 2017a) 

Ni-Au/RGO  - 6 4-NP 0.662 36.77 
(Li et al. 

2017) 

Au-Cu/RGO 3:1 - - 4-NP 5.760 960 
(Rout et 

al. 2017) 

Pd/Au@g-C3N4-

N 
1:1 - - 4-NP 0.791 52.72 

(Fang et 

al. 2017) 

Au@Pd@RuNPs - porous 6 

4-NP 1.452 

- 
(Sahoo et 

al. 2015) 

Congo red 1.494 

Reactive red 0.804 

Reactive black 5.694 
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