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ABSTRACT: 18 

Recently enormous exertions have been dedicated to modify graphitic carbon nitride (g-C3N4)-19 

based photocatalysts via morphological adjustment and compositional control, providing 20 

various ways for the advance of high-efficiency catalysts in the field of photocatalytic water 21 

purification. This review summarizes the latest developments in photocatalytic removal of 22 

contaminants and sterilization in water with g-C3N4-based materials, highlighting the 23 

performance and mechanism of multi-component cooperative photocatalysis. We review 24 

various strategies for improving the catalytic performance of g-C3N4-based photocatalysts, 25 

introducing theoretical calculations to explore the relationships between basic properties and 26 

photocatalytic activity. Then the performance and mechanism of photocatalytic water 27 

purification with g-C3N4-based materials are discussed. Finally, we put forward the principles 28 

and ways for the enhancement and application of g-C3N4-based composites in the future, 29 

evaluating their full life-cycle in photocatalytic water purification. 30 
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1. Introduction 53 

As the world’s population increases and global industrialization accelerates, fresh and 54 

sustainable water supplies are under unprecedented pressure [1-3]. Large amounts of pollutants, 55 

such as antibiotics, organic dyes, pesticides, and heavy metal ions, are released daily into 56 

different types of water bodies, finally polluting raw water. These pollutants have high 57 

chemical and physical stability in the environment and are difficult to be degraded by 58 

microorganisms. At the same time, many persistent pollutants can accumulate in organisms  59 

including human beings, and cause great harm to organisms [4-8]. Therefore, the elimination 60 

of these compounds from the environment through effective methods is important. Until now, 61 

many advanced water purification technologies have been developed to convert difficult-to-62 

biodegrade organic pollutants into less toxic or more biodegradable byproducts [9-11].  63 

Compared with other treatment techniques, photocatalytic technology has many important 64 

features [12-14], such as mild operating conditions and fast kinetics [15-19], without secondary 65 

pollution [20,21], as well as low operating cost and high value-added production [22,23]. For 66 

water treatment applications, engineers and researchers prefer heterogeneous photocatalysts 67 

because heterogeneous photocatalytic processes avoid cumbersome separation procedures and 68 

recycling methods as well as loss of expensive catalysts [24-27]. Heterogeneous photocatalytic 69 

reaction is a complex physical and chemical process, mainly including the generation of 70 

photogenerated electrons and hole pairs, surface capture of carrier, recombination of 71 

photogenerated electron-hole pairs, and inter-interface charge transfer [28-30]. In recent years, 72 

the development of advanced materials has provided rich soil for the study of heterogeneous 73 
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photocatalyst.  74 

The advanced materials have unique properties such as visible light responsiveness, rich 75 

active sites, and controllable molecular and energy band structures. The suitable photocatalytic 76 

materials have great significance to the development of photocatalyst technology. The 77 

strategies for increasing the photocatalytic activity of photocatalytic materials include: (i) 78 

Reducing the bandgap width of semiconductor catalysts to reduce the energy required for 79 

electron transition reactions; (ii) Choosing a more suitable crystal structure to reduce 80 

recombination of photogenerated carriers; (iii) Changing the morphology of the catalyst to 81 

increase the catalytic active sites on the photocatalyst. Besides, attention should also be paid to 82 

the catalytic stability of the photocatalyst and the external reaction conditions of the 83 

photocatalytic system. Currently, semiconductor photocatalysts have been widely studied and 84 

commercially valuable [28,31], including TiO2 [32], BiOX [33], g-C3N4 [34], perovskite 85 

materials [35], ZnO [36], and porous organic polymer [37,38]. 86 

Graphitic carbon nitride (g-C3N4) has attracted extensive interdisciplinary attention due to 87 

its unique layered structure, suitable band structure, metal-free properties, and excellent  88 

stability [39-41]. Above all, g-C3N4 allows for modification through molecular modifications  89 

and surface engineering, providing various ways to prepare g-C3N4-based materials with 90 

effective photocatalytic performance [34,42,43]. Many research groups are striving to construct 91 

an appropriate g-C3N4-based system through the interaction between different semiconductor 92 

materials to accelerate the separation of photogenerated carriers. For application, the g-C3N4-93 

based materials show interesting properties, especially the visible light response in nitrogen 94 

fixation [44,45] and removal of contaminants [46]. Habibi-Yangjeh’s group proposed an 95 
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enhancement mechanism for nitrogen fixation and directed the preparation of a g-C3N4-based 96 

binary visible light induced photocatalyst with high activity and good stability for the 97 

photofixation of nitrogen [44]. Meanwhile, Habibi-Yangjeh’s group also constructed a g-C3N4-98 

based ternary metal-free nanocomposites to improve the absorption of visible light and promote 99 

the separation of photogenerated charge [45], providing a new way to solve the environmental 100 

issues. 101 

Recently, based on a deeper understanding of the relationship between the photoelectric 102 

properties and structural components of polymer-based materials, researchers delved deeper 103 

into the photoresponsive g-C3N4-based materials, providing a new approach for efficient 104 

photocatalytic water purification. Current reviews present the discussion on the g-C3N4-based 105 

photocatalysts [34,42,47], but lack reflection on the actual water purification situation. This 106 

review has conducted as a detailed investigation of g-C3N4-based materials for photocatalytic 107 

water purification, highlighting the photocatalytic properties and mechanism models. We also 108 

summarize the improvement strategies and the theoretical research to guide the synthesis and 109 

design of g-C3N4-based photocatalysts. Finally, g-C3N4-based photocatalysts are favored by 110 

engineers and are expected to be further applied to actual water purification modules. Therefore, 111 

in the section of conclusions and perspectives, we present their future development and life-112 

cycle assessment (LCA). 113 

2. Enhancement Strategies 114 

Although g-C3N4 has many excellent properties and extensive applications, ordinary g-115 

C3N4 still faces three main challenges [34,42,48]: (i) The inherent energy band characteristics  116 
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of g-C3N4 leads to narrow light response range and low visible light energy utilization ratio; 117 

(ii) The layers of g-C3N4 are relatively close to each other leads to its fewer reaction sites; (iii) 118 

No direct valence bond between the molecular layers of g-C3N4 and photogenerated carriers  119 

produced by g-C3N4 with short existence life leads to the deficiency of the photogenerated 120 

charge involved in the redox reaction. The above three problems greatly limit the application 121 

of g-C3N4. Currently, the improvement strategies include morphology adjustment (such as 122 

preparation of materials with different dimensions) [49-51], composite modification with 123 

other semiconductor materials to construct heterojunction [52-54], surface noble metal 124 

deposition [55-57], and single-atom doping [58-60]. 125 

2.1 Morphology adjustment and control 126 

In the process of catalytic reaction, the surface of the catalysts is usually used as the site of 127 

the reaction, so their morphology is very important for the photocatalytic process. The g-C3N4 128 

has a flexible structure and can withstand high temperatures, so it is possible to prepare g-C3N4-129 

based materials with different morphologies using different templates and post-synthesis 130 

modification methods during the synthesis process [34,48,61]. The special morphology of the 131 

prepared g-C3N4 catalysts (Fig. 1) includes three-dimensions (3D) porous flowery g-C3N4 [62], 132 

two-dimensions (2D) lamelliform g-C3N4 [51,63], one-dimensions (1D) g-C3N4 nanotube [49], 133 

zero-dimensions (0D) g-C3N4 hollow sphere [64], and novel 3D structures such as horned 134 

materials [65] and fish scale g-C3N4 [66].  135 
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 136 

Fig. 1. Rich morphologies of the g-C3N4: porous flower [62], lamelliform [63], hollow sphere 137 
[64], nanotubes [49], horn [65], and fish scale [66]. 138 

The commonly used methods for preparing regular porous g-C3N4 include the soft template 139 

method and the hard template method [42]. Subsequent developments include the preparation 140 

of porous materials by controlling reaction conditions without adding any template agent [62]. 141 

To illustrate, Zhu et al. used melamine and hydroxyethylidene diphosphonic acid (HEDP) as 142 

reaction precursors to prepare phosphorus-hybridized mesoporous g-C3N4 at sintering 143 

condition of 500 °C without adding any template [62]. The obtained mesoporous P-doped g-144 

C3N4 has higher photoelectric charge separation efficiency, so obtain a higher photocatalytic 145 

activity than the pure g-C3N4.  146 

Flaky g-C3N4 can be prepared by liquid-exfoliation method and thermal exfoliation method 147 

[67,68]. Li et al. prepared the graphene-like C3N4 from the bulk phase g-C3N4 by liquid-148 

exfoliation (Fig. 2a), and the resulting flake g-C3N4 was only 3-6 atomic layers thick [63]. Due 149 
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to the larger specific surface area, wider bandgap, and stronger electronic transport capacity, 150 

the obtained graphene-like C3N4 has enhanced photocatalytic activity. Besides, Niu et al. 151 

obtained an ultrathin g-C3N4 nanosheet (Fig. 2b) with a specific surface area of 306 m2 g-1 and 152 

thickness of 2 nm by thermal exfoliation [50], which showed higher photoresponse ability and 153 

photocatalytic activity than the bulk g-C3N4.  154 

 155 

Fig. 2. Liquid-exfoliation method and thermal exfoliation method to prepare flaky g-C3N4. (a) 156 
The liquid-exfoliation methods for g-C3N4 [63]. (b) Thermal oxidation etching for the g-C3N4 157 
nanosheets [50]. 158 

Horn hollow g-C3N4 (Fig. 1) synthesized by Liu et al. using copolymerization of melamine 159 

and ammonium bromide (NH4Br) in the first [65]. The characteristics of hollow, mesoporous, 160 

ultra-thin, and trumpet greatly improved the efficiency of photo-generated charge separation, 161 

carrier density, and surface charge transfer. To be specific, electrons generated by the 162 

photoexcited horn hollow g-C3N4 migrated to the outer layer of the material, while holes 163 

migrated to the inner layer, thus achieving efficient space charge separation. Furthermore, Lin 164 

et al. obtained fish-scale g-C3N4 nanosheets (Fig. 1) by subsequent heat treatment of original 165 

g-C3N4 nanosheets with ethylene glycol, polyvinylpyrrolidone (PVP), and hexadecyl trimethyl 166 
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ammonium bromide (CTAB) [66]. For this unique fish-scale structure, photoelectrons migrate 167 

selectively along the plane to the edge of the fish-scale, which is beneficial to the detachment 168 

of photogenerated carriers, thus improving the photocatalytic efficiency. 169 

2.2 Construction of heterojunction 170 

The combination of different semiconductor materials comes in two main forms, one is to 171 

combine g-C3N4 with wide bandgap semiconductor to form heterojunctions, reducing the 172 

photoelectron-hole pairs recombination through the photogenerated charge transfer between 173 

the interface of heterojunctions [53,69,70]. The other is to combine g-C3N4 with narrow 174 

bandgap semiconductors (such as sulfides, metal oxides, metal halides, etc.) [71-73]. 175 

Combining g-C3N4 with a narrow bandgap semiconductor promotes the detachment of 176 

photogenerated carriers and improves the optical response range of composite materials owing 177 

to the excellent optical response-ability of narrow bandgap semiconductors. 178 

In both cases, the large heterojunction interface between two semiconductors is conducive 179 

to the redistribution of charges, which significantly improves the photocatalytic performance 180 

[34,74]. In 2018, we constructed the isotypic heterojunction PCN/CN (PCN: P-doped g-C3N4, 181 

CN: g-C3N4) by attaching the lamellar CN layer to the filamentous PCN sheet containing C, N, 182 

and P elements [75]. The heterogeneous structure of PCN/CN obtain enhanced photogenic 183 

charge separation and has good energy level matching, which is beneficial to produce a stronger 184 

light response in the whole ultraviolet and visible regions. Both CN and PCN are stimulated 185 

by visible light to yield carries, and the band migration between PCN and CN can drive the 186 

transfer of photogenic carries.  187 
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Noteworthily, simulating the natural photosynthesis, select suitable semiconductor materials 188 

to form reversible donor/recipient pair with g-C3N4 to construct a Z-scheme heterojunction is 189 

regarded as one of the best ways to improve photocatalytic activity [76-78]. For Z-scheme g-190 

C3N4-based photocatalysts, the electrons from the CB of g-C3N4 can maintain a strong 191 

reduction ability. Meanwhile, besides g-C3N4, another component of the Z-scheme g-C3N4 192 

composite can also compensate for the weak oxidation capacity of holes in the VB of g-C3N4 193 

[54,79]. Therefore, the g-C3N4-based Z-scheme systems can efficiently retain electrons and 194 

holes to greatly improve the photocatalytic performance [80-82]. Furthermore, notably, we 195 

propose a “double Z-Scheme” heterojunction for GO/ACR/CN (GO: graphene oxide, ACR: 196 

Ag2CrO4, CN: g-C3N4) [83]. As shown in Fig. 3, ACR, GO and g-C3N4 are all excited by visible 197 

light to produce carries in the CB or VB, then the photoelectrons in the CB of ACR shift 198 

towards the metal Ag. Meanwhile, the holes in the VB of GO or CN move to the metal Ag and 199 

binds to the electron. Finally, the formed h+, •O2
 ‒, and •OH react with organic pollutants to 200 

degrade them.  201 

 202 

Fig. 3. Photocatalytic reaction and charge transfer mechanism of the GO/ACR/CN ternary 203 
photocatalyst under visible light irradiation. Adapted with permission from ref. [83]. Copyright 204 
2017 Elsevier B.V. 205 
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2.3 Noble metal deposition 206 

Surface noble metal deposition is possible to promote photocatalytic performance by the 207 

formation of Schottky barrier and surface plasma resonance (SPR) on the interface of the g-208 

C3N4 matrix [57,84,85]. The Schottky barrier can capture and extend electron life, and SPR 209 

can produce photon scattering, plasma resonance energy transfer, and hot electron excitation, 210 

both of which can improve photocatalytic reaction activity [84]. In 2011, Pan et al. applied 211 

platinum (Pt) and palladium (Pd) to the functionalization of g-C3N4 [55], which enhanced the 212 

carrier mobility and enhanced the photogenerated electron-hole pairs separation. 213 

Due to the presence of Ag, Ag/g-C3N4 composites synthesized by the surface noble metal 214 

deposition has enhanced light absorption capacity under different lighting conditions, and the 215 

built-in electric field can promote the separation of photogenerated charges [57]. As an 216 

improvement, Xue et al. attached dual noble metal nanoparticles with a particle size of 7-15 217 

nm to the surface of g-C3N4 by photoreduction (Fig. 4a-c) to form Ag/Pt/g-C3N4 composite 218 

materials [56]. As shown in Fig. 4d, the SPR effect of Au generates many hot electrons under 219 

light conditions. These hot electrons are inserted into the CB of g-C3N4 subsequently. 220 

Meanwhile, the photoelectrons are transferred from the CB of g-C3N4 to the outward of Pt 221 

nanoparticle through the electronic bridge effect of Pt, and then a reduction reaction occurs.  222 
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 223 

Fig. 4. Synthesis of Au/Pt/g‑C3N4 with plasmon enhanced photocatalytic activity. Typical TEM 224 
images (a and b) and HRTEM image (c) of Ag/Pt/g-C3N4 nanocomposites. (d) The proposed 225 
photocatalytic mechanism for degradation of TCHCl by Au/Pt/g-C3N4 nanocomposites under 226 
visible light irradiation. Adapted with permission from ref. [56]. Copyright 2015 American 227 
Chemical Society.  228 

2.4 Doping and defect engineering 229 

Single-atom doping refers to the doping of metallic elements or non-metallic elements into 230 

the g-C3N4 structure, which can broaden the optical response range. As well, doping can 231 

enhance the electrical conductivity of materials, facilitate the separation and transmission of 232 

photogenerated carriers. Among them, common doped elements [59,86,87] are non-metallic 233 

elements such as sulfur (S), phosphorus (P), and boron (B), and the metallic elements such as 234 

Fe, Co, Zn, and Ni. Wang’s group prepared bromine (Br)-doped g-C3N4 using the urea and 235 
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NH4Br [88], and Br element can regulate the structure and light responsiveness of g-C3N4 to 236 

obtain higher photocatalytic performances than the pure samples. Furthermore, P-doped g-237 

C3N4 also has a stronger photocatalytic ability to degrade organic dye than the g-C3N4 before 238 

doping [60]. 239 

S-doping can modify the interior structure of g-C3N4 [89-91], for example, Liu et al. found 240 

the S-doped g-C3N4 have an excellent photoredox effect due to the uniform substitution of S 241 

for crystal lattice N and the unique electronic structure caused by the quantum confinement  242 

effect [92]. Furthermore, S/P co-doping can inhibit g-C3N4 crystal growth, increases the 243 

specific surface area, reduces the bandgap, and the O-functionalized increase the adsorption 244 

capacity of g-C3N4 [93]. Zhen et al. introduced Fe or Cu into the g-C3N4 catalyst and found 245 

that Fe or Cu can efficiently improve the photocatalytic performance of the overall material 246 

[94]. However, noteworthily, the excessive single-atom doping could lead to electron-hole pairs 247 

recombination and form more defects, which may hinder the photocatalytic process [95-97]. 248 

Recently, with the development of in situ meter technique, researchers have found that the 249 

coordination environment of g-C3N4 can provide anchoring and confinement for metal atom 250 

growth to form single-atom catalyst with excellent catalytic performance [98-102]. In practical 251 

water treatment applications, the ideal characteristic obtained by single-atom catalysts is the 252 

close to each other and uniformly dispersed of active sites in the g-C3N4 networks [103]. To 253 

accurately locate and prove the existence of a single atomic catalyst, which usually requires the 254 

advanced characterization techniques. To illustrate, aberration-corrected scanning transmission 255 

electron microscopy (AC-STEM) and aberration-corrected high-resolution transmission 256 
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electron microscopy (HR-TEM) can provide the direct structural information of metal-atom 257 

[103-105]. Meanwhile, the combination of X-ray photoelectron spectroscopy (XPS), Fourier 258 

infrared spectroscopy (FTIR) and advanced computational chemistry methods, a deeper 259 

understanding of the structure of single atoms in the matrix can be provided [101,106,107]. 260 

Defect engineering is considered as an effective strategy to adjust the main structure and 261 

chemical environment of g-C3N4 molecules to improve their visible-light response, 262 

photoelectric charge separation, and surfactant free radical generation [108-112]. Liu’s group 263 

used the template method to prepare porous g-C3N4 with marginal defects [113]. The extra 264 

electrons enriched at the defects of porous g-C3N4 give it higher interfacial oxidation activity, 265 

which is conducive to quenching the photogenerated holes and increasing the photocurrent, 266 

thus promoting the photoelectron reaction. Wu’s group used the thermal treatment method 267 

containing fluorine solvent to control the defects of g-C3N4 [114]. Solvent heat treatment is 268 

conducive to the recondensation of terminal amino group, thus increasing the crystallinity to 269 

reduce defects. Meanwhile, the addition of fluorine promotes the formation of nitrogen vacancy 270 

thus to increases the active site. As well as, Huang et al. used in situ soft chemical treatment to 271 

synthesize g-C3N4 microtubules with adjustable nitrogen vacancy [115]. Nitrogen vacancy on 272 

the surface of g-C3N4 microtubules can adsorb and activate reactants and capture 273 

photogenerated electrons, thus enhancing photocatalytic activity. For the meantime, the porous 274 

wall structure of g-C3N4 microtubules can promote the diffusion of reactants, and the tubular 275 

structure is favorable for the directional migration of photoelectric charge.  276 
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3. Theoretical Investigation 277 

In general, many materials are synthesized and modified based on "trial-and-error" research 278 

to explore the composition, structure, and properties of efficient catalytic materials. It is full of 279 

contingency, so systematically elucidate the universal law is challenging. This section mainly 280 

describes the theoretical research on the basic properties of g-C3N4-based photocatalysts. 281 

3.1 Internal mechanism of photoactivity 282 

For understanding the mechanism of photogenic carrier transfer at the hybrid interface of 283 

composite materials, density functional theory (DFT) calculation was performed [116-118]. 284 

According to the crystal structure of a single component, we constructed the O-doped C3N4 285 

(OCN)/CoAl-layered double hydroxide (CoAl-LDH) heterojunction (OCAL) hybrid crystal 286 

model of lattice plane combination interface [116]. The deformation degree of the OCN lattice 287 

at the interface is far greater than that of coal-LDH, which stabilizes the Femi energy level and 288 

increases the depth of the hole, thus affecting the transfer and catalytic performance of the 289 

carriers on the interface [119]. Furthermore, the closest distance between the N atoms of OCN 290 

and the hydrogen atoms on the coal-LDH surface is 1.68Å, which may indicate the existence 291 

of obvious hydrogen bonds at the interface [120]. As well, CoAl-LDH and OCN generate the 292 

interfacial internal electric field (IIEF), which is favorable for photoinduced carrier separation 293 

[121-123]. Meanwhile, the electric field in the interface may cause the band edge to bend 294 

towards the interface [124,125] and transform the photocatalytic mechanism from the type-II 295 

mechanism to the Z-scheme mechanism [125-127]. Electrons on OCN rapidly combine with 296 

holes of CoAl-LDH through solid-solid contact interface [128], resulting in more •O2
 ‒ and 297 
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•OH radicals generation from 2D-2D heterojunctions to degrade the organic pollutants.  298 

Given that bandgap (Eg), the energy level structure, and molecular orbitals of photocatalyst 299 

play a significant effect on its photocatalytic performance. Appropriate reduction of Eg can 300 

make the light absorption region stronger and the electron migration faster [117,129,130]. 301 

Compared with CN and quantum dots (BPQDs), the TCN/BPQDs (BPTCN) composites have 302 

a denser energy band curve, which indicates that BPTCN produces more photogenerated 303 

carriers during the photocatalytic process. As well, the formation of a narrow bandgap in the 304 

sample further moves the VBT of BPTCN up [131,132]. 305 

Besides, compared with CN, 2-hydroxy-4,6-dimethylpyrimidine grafted carbon nitride 306 

(ACN-10) has a narrower bandgap (Fig. 5a-d) [118]. Therefore, ACN-10 has enhanced visible 307 

light capture capability. Meanwhile, the HOMO and LUMO electrons of CN are both located 308 

on heptazine (Fig. 5e), indicating that electrons and holes are in the same heptazine cell. As 309 

shown in Fig. 5f, the HOMO of ACN is mainly distributed in the heptazine unit, while the 310 

LUMO of ACN is mainly distributed in the HDMP unit, and only a small amount is distributed 311 

in heptazine near HDMP [133]. Additionally, noteworthily, HOMO and LUMO energy levels 312 

show a downward trend after HDMP is added to CN (Fig. 5g), which results in a bandgap 313 

reduction of 0.24 eV, thus enhancing photocatalytic activity.  314 
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 315 

Fig. 5. Molecular engineering of polymeric C3N4. (a) Tauc plots, (b) Mott-Schottky plots, (c) 316 
VB XPS spectra, and (d) band structure diagrams for the CN and ACN-10; Optimized HOMO 317 
and LUMO energy levels of the (e) CN and (f) ACN; (g) DFT-calculated HOMO-LUMO band 318 
structures of the CN and CAN. Adapted with permission from ref. [118]. Copyright 2020 319 
Elsevier B.V. 320 

3.2 Other basic properties 321 

Besides the basic properties mentioned above, other parameters including work function (Φ), 322 

optical absorption, and the effect of pressure also are significant basic properties of g-C3N4-323 

based nanocomposites [134-136]. Work function (Φ) was defined as an escape from the Fermi 324 

level to vacuum the minimum energy [137-139]. In the theoretical calculation of photocatalytic 325 

performance, the work function is often used to assess the Fermi energy of g-C3N4 [138]. 326 

Normally, the work function is inversely proportional to the Fermi energy level, and when g-327 

C3N4 is compounded with other materials, the relative location of their Fermi energy level can 328 
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be obtained by calculating their work function. The optical absorption characteristic of g-C3N4 329 

is related to the curve of absorption coefficient (I) and photon energy or wavelength [140]. As 330 

shown in Fig. 6, the g-C3N4 optical response range includes visible light, and the light  331 

absorption curve of g-C3N4-based photocatalysts can be changed by the heteroatom doping and 332 

doping atom change [140]. Furthermore, with the increase of pressure, the lattice constant, unit 333 

cell volume, and bandgap decreased gradually, while the light absorption increases gradually  334 

[141].  335 



 

20 

 336 

Fig. 6. Optical absorption curve of monolayer g-C3N4 before and after doping nonmetal atoms. 337 
Adapted with permission from ref. [140]. Copyright 2017 Elsevier B.V. 338 
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4. Photocatalytic Mechanism and Performance 339 

Modified g-C3N4-based photocatalysts have attracted increasing attention owing to their 340 

promising application prospects in water purification. The state-of-art advances of 341 

photocatalytic wastewater treatment by g-C3N4-based materials are summarized in Table 1-4, 342 

including removal of antibiotics and pesticide, degradation of organic dyes, inactivation of 343 

water-borne pathogens, and reduction of heavy metal ion. This section describes the effect and 344 

detailed mechanism of degradation of pollutants and inactivation of pathogens by g-C3N4-345 

based photocatalysts. 346 

Table 1. Progress of g-C3N4-based Composites Recent Application in Photocatalytic Degradation of Antibiotics and Pesticide including Properties and Photodegradation Performance

Composites 

Improvement strategy Bandgap (eV) Light source 

Degradation efficiency 

Recycling Ref. 

Antibiotics, 

concentration (mg L-1)

Removal % 

(reaction time) 

kd
a 

(min-1) 

kp
b 

(min-1) 

kd/kp 

(times) 

g-C3N4/Bi2WO6 Type-II heterojunction 2.63 300 W Xe, λ > 420 nm IBF, 500c 96.1 (60 min) 0.052 0.008 6.5 5 [142] 

g-C3N4/PCN Isotype heterojunction 2.42 300 W Xe, λ > 420 nm TC, 10 89.7 (60 min) 0.04392 0.01145 3.8 5 [75] 

KMCN Kalium doping 2.33 300 W Xe, λ > 420 nm TC, 20 85.13 (60 min) 0.0282 0.0058 4.86 4 [143] 

BCM-C3N4 Carbon doping 2.02 300 W Xe, λ > 420 nm SMZ, 10 98 (60 min) - - 5 4 [144] 

CCN/Bi12O17Cl2 
Carbon doping and Type-II 

heterojunction 
- 300 W Xe, λ > 420 nm TC, 20 94 (60 min) 0.0409 0.0157 2.60 4 [145] 

g-C3N4/WO3 Z-scheme heterojunction - 300 W Xe, λ < 420 nm CIP, 50 100 (120 min) - - - 5 [146] 

POCN 
Phosphorus and oxygen cobalt 

doping 
2.30 350 W Xe, λ > 420 nm ENFX, 10 - 0.0236 0.0038 6.2 4 [147] 

g-C3N4/CdS-NHCs Type-II heterojunction - 300 W Xe, λ > 420 nm CXS, 10 96.46 (90 min) 0.0338 0.0044 7.68 4 [129] 

Nv MM CN 
Nitrogen vacancy modified 

and morphological adjustment
2.77 300 W Xe, λ > 420 nm NOR, 10 99.9 (20 min) - - - 5 [148] 

g-C3N4/Ag/Bi5FeTi3O15

Noble metal deposit and Z-

scheme heterojunction 
- 300 W Xe, λ > 420 nm TC, 20 86 (20 min) 0.0465 0.0137 3.4 5 [149] 

Cu-C3N4 Cu doping - - RhB, 10 
~95%, (60 

min) 
- - - - [103] 

HTCN-C 
Sulfur doping and 

morphological adjustment 
2.47 300 W Xe TC, 20 82.67 (60 min) 0.0293 0.0059 4.97 5 [150] 

g-C3N4/Bi2WO6/AgI Dual Z-scheme heterojunction - 300 W Xe, λ > 420 nm TC, 20 91.13 (60 min) 0.0349 0.00846 4.13 4 [151] 

UPCN/BNQDs Morphological adjustment and - 300 W Xe, λ > 420 nm OTC−HCl, 10 82 (60 min) 0.0309 0.0072 4.3 4 [152] 
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type-II heterojunction 

CN-SA Morphological adjustment 2.37 300 W Xe, λ > 420 nm SMZ, 100c 99 (60 min) 0.0823 0.0293 2.8 4 [153] 

LCN-0.015 L-cysteine modified 2.55 300W Xe, λ > 420 nm SMZ, 100c 99.7 (60 min) 0.1062 0.0086 12 4 [154] 

g-C3N4/Co3O4@CoO Dual Z-scheme heterojunction - 300W Xe, λ > 420 nm TC, 10 97 (120 min) 0.021 - - 4 [155] 

MCN Morphological adjustment 2.70 300W Xe, λ > 420 nm CFX, 2 99 (60 min) 0.0858 0.0285 3.03 5 [156] 

g-C3N4/ZrO2-x Z-scheme heterojunction - 300W Xe, 420 nm–780 nm TC-H, 10 90.6 (60 min) 0.04748 0.00915 5.19 - [157] 

g-C3N4@PDA/BiOBr Z-scheme heterojunction - 300W Xe, λ > 420 nm SMX, 2.5 ~100 (60 min) - - - 5 [158] 

ACN HDMP grafted 2.35 300W Xe, λ > 420 nm OTC-HCl, 20 79.3 (60 min) 0.029 0.012 2.42 4 [118] 

Co-pCN Cobalt doping - 300W Xe, λ > 420 nm OTC, 20 75.7 (40 min) 0.0381 0.0103 3.7 4 [101] 

SCN-CN 
Morphological adjustment and 

type-II heterojunction 
2.92 300W Xe, λ > 420 nm TC-H, 10 82.6 (30 min) - - - 5 [159] 

g-C3N4/Ag3PO4/AgI Dual Z-scheme heterojunction - 300W Xe, λ > 420 nm NTP, 5 95 (4 min) 0.76 0.047 16.2 - [160] 

g-C3N4/Fe3O4/Ag Silver doping - UV region DZN, 5 100 (60 min) 0.067 - - - [161] 

ZnIn2S4/g-C3N4 Type-II heterojunction - 500 W Xe, λ> 420 nm. 2,4-D, 100 90 (180 min) 0.0129 0.0044 2.9 - [162] 

a The rate constant of the g-C3N4-based composite catalyst; b The rate constant of the pristine catalyst; c μmol L-1; 300W Xe: 300W Xe lamp; SMZ: sulfamethazine; IBF: ibuprofen; PCN: phosphorus-

doped g-C3N4; TC: tetracycline; CIP: ciprofloxacin; ENFX: enrofloxacin; NHCs: hollow carbon spheres; CXS: cloxacillin sodium; NOR: norfloxacin; OTC−HCl: oxytetracycline hydrochloride; 

UPCN: ultrathin porous g-C3N4; SA: salicylic acid; LCN: L-cysteine modified carbon nitride; CFX: cefotaxime; TC-H: Tetracycline hydrochloride; PDA: polydopamine; SMX: sulfamethoxazole; 

ACN: 2-hydroxy-4,6-dimethylpyrimidine (HDMP) grafted polymeric carbon nitride; NTP: nitenpyram; DZN: diazinon; AC: activated carbon; PMS: peroxymonosulfate; 2,4-D: 2,4-

dichlorophenoxyacetic acid.  
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Table 2. Recent Progress of g-C3N4-based Composites Application in Photocatalytic Degradation of Organic Dyes including Properties and Photodegradation Performance 

Composites Improvement strategyBandgap (eV) Light source 

Degradation efficiency 

Recycling Ref. 

Organic dyes and 

concentration (mg L-1)

Removal % 

(reaction time) 

kd
a 

(min-1) 

kp
b 

(min-1) 

kd/kp 

(times) 

g-C3N4/MIL-125(Ti) Type-II heterojunction 3.24 300 W Xe, λ > 420 nm RhB, 50 95.2 (60min) 0.0624 0.0299 2.1 5 [163] 

g-C3N4/Sb2S3 Type-II heterojunction 1.36 300 W Xe, λ > 760 nm MO, 10 70 (60 min) 0.0103 0.0039 2.6 5 [164] 

g-C3N4/h-BN Type-II heterojunction - 300 W Xe, λ > 420 nm RhB, 20 99.5 (40 min) 0.13091 0.01805 7.3 5 [74] 

OCN/CoAl-LDH 
Oxygen doped and Z-

scheme heterojunction
- 300 W Xe, λ > 420 nm MO, 20 99.7 (60 min) 0.09568 0.0025 38.3 4 [116] 

g-C3N4/CsPbBrCl2 Type-II heterojunction - 500W Xe, λ > 420 nm Eosin B, 10c 94 (120 min) 0.0222 0.00795 2.79 3 [73] 

Ag2CO3@g-C3N4 
Z-scheme 

heterojunction 
- 

250 W halide lamp, λ > 

420 nm 
MO, 10 96.7 (54 min) - - - 5 [165] 

g-C3N4/cellulose Heterojunction - 350W Xe, λ < 400 nm MB, 15 99.8 (80 min) - - - 4 [166] 

g-C3N4/Bi2O3 
Z-scheme 

heterojunction 
1.5 

75W halogen lamp, λ > 

420 nm 
MG, 5 79 (60 min) 0.0191 0.0127 1.2 5 [167] 

g-C3N4/Ag/P3HT 
Z-scheme 

heterojunction 
- 

100W LED lamp, λ < 

420 nm 
MO, 10 ~100 (500 min)0.0110/0.00570.0022/0.0015 5/3.8 5 [168] 

g-C3N4/SnO2 Type-II heterojunction - 400W lamp, λ > 500nm MB, 10 99.38 (75 min) 0.0639 0.0237 2.7 6 [169] 

GO/CN Type-II heterojunction - LED lamp, λ< 417 nm. RhB, 50c ~100 (360 min) - - - 3 [170] 

O-g-

C3N4/Zn2SnO4N/ZnO 

Double Z-scheme 

heterojunction 
- 500W Xe, λ > 420 nm RhB, 5 90.14 (60 min) 0.0606 0.02886 2.10 6 [171] 

D35-TiO2/g-C3N4 Type-II heterojunction - 300W Xe, λ > 420 nm Bis-phenol A, 10 ~100 (20 min) 0.285 0.099 2.88 5 [172] 
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g-C3N4-ZnO@graphene 
Z-scheme 

heterojunction 
- 300 W Xe, λ ≤ 380 nm RhB, 20 100 (120 min) - - - 4 [173] 

C3N4/MoO3 
Z-scheme 

heterojunction 
- 150 W Xe, λ > 400 nm RhB, 20 - (40 min) 0.083 0.024 3.46 4 [174] 

CdS/CQDs/g-C3N4 
Z-scheme 

heterojunction 
2.68 300 W Xe, λ > 400 nm RhB, 10 98 (120min) 0.143 0.041 3.48 4 [175] 

TNR@CN-C3N4/FTO Type-II heterojunction 2.44 Xe, λ > 400 nm MO, 10 94.2 (180 min) 0.0160 0.054 2.96 5 [176] 

SnS/g-C3N4 
Z-scheme 

heterojunction 
- 150 W Xe, λ > 420 nm RhB, 6 97 (20 min) 0.18 0.016 11.25 4 [177] 

xECN Erbium-doped 2.47 35 W Xe RhB, 5 94 (30 min) 0.0747 0.0205 3.64 - [178] 

In:CN Indium-doped 2.74 500W Xe, λ > 420 nm RhB, 10 ~100 (60 min) 0.064 0.014 4.6 6 [179] 

AgI-Ag2S@g-C3N4 
Double Z-scheme 

heterojunction 
2.56 350W Xe EB, 5 98.40 (50 min) 0.0784 0.0154 5.09 3 [180] 

Ag/WO2.9/g-C3N4 
Z-scheme 

heterojunction 
- 500W Xe, λ>420 nm RhB, 10 92.5 (3.5 hours) - - - 4 [181] 

a The rate constant of the g-C3N4-based composite catalyst; b The rate constant of the pristine catalyst; c μmol L-1; MIL-125(Ti): Ti-benzenedicarboxylate composites 300 W Xe: 300 W Xenon 

lamp; RhB: Rhodamine B; MO: methyl orange; MB: methylene blue; MG: malachite green; P3HT: Poly (3-hexylthiophere); LED: light-emitting diode.  
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Table 3. Recent Advances in Sterilization and Disinfection by g-C3N4-based Photocatalysts 

Composites Improvement strategy Amount (mg mL-1) 

Light intensity 

(mW cm-2) Pathogene 

Concentration 

(CFU mL-1) 

Radiation duration 

and efficiency 

Rate constant 

(k, min-1) Recycling Ref. 

F-g-C3N4-30-EP 
Morphology adjustment and 

functionalization 
0.50 102.23 

E. coli, K-12, Salmonella 

ATCC 13076 
106 

30 min, over 

99.9999% 
0.14 40 [182] 

PEI/C3N4 
Morphology adjustment and 

functionalization 
0.1 150 E. coli/E. faecalis 2×106/2×104 

45min, 

~100%/60min, 

~100% 

- - [183] 

Ag/AgBr/g-C3N4 Z-scheme heterojunction 0.2 20 E. coli 108 120 min, 7.9 log - - [184] 

CeO2/PCN S-scheme heterojunction 0.010  S. aureus 4.51 × 107 15 min, 88.1% - - [185] 

Ag/g-C3N4 Ag deposition 0.10 271 E. coli ~107 120 min, 100% - - [186] 

MoS2/g-C3N4 MoS2 deposition 0.10 60 E. coli 2×103 60 min, ~100% - - [187] 

PDI/O-CN Type-II heterojunction 0.2 - S. aureus 107 180 min, 96.6%   [188] 

CuS/PCN CuS deposition - 200 S. aureus/E. coli - 
20 min, 98.23 %/20 

min, 99.16 % 
- - [189] 

O-g-C3N4/HTCC Z-scheme heterojunction 0.15 40 
Human adenovirus type 2 

(ATCC VR-846) 
105 MPN mL-1 120 min, ~100% - 5 [190] 

BiVO4/Ag/g-C3N4 Z-scheme heterojunction 0.25 - E. coli 3 × 106 60 min, ~100% - - [191] 

g-C3N4/TiO2 Z-scheme heterojunction 0.10 - E. coli 103 30 min, ~100% - - [192] 

MgTi2O5/g-C3N4 Z-scheme heterojunction 0.50 1000 E. coli 1.2 × 107 240 min, ~100% - 4 [193] 

ACHT-CN-1000W Morphology adjustment 5 50 E. coli 2.5 × 107 120 min, ~100% - - [194] 

PCNS Morphology adjustment 0.4 - E. coli 5 × 106 240 min, ~100% - - [195] 

GO/g-C3N4 - 0.1 300 E. coli 109 120 min, 97.9% - 4 [196] 

Bi2MoO6/g-C3N4 Type-II heterojunction - - E. coli 2.5 × 107 180 min, ~100% - 4 [197] 
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SL g-C3N4 Morphology adjustment 0.1 - E. coli 2 × 107 240 min, ~100% - 3 [198] 

E. coli: Escherichia coli; PEI: Polyethyleneimine; E. faecalis: Enterococcus faecalis; S. aureus: Staphylococcus Aureus; PDI: perylene diimide; ACHT: Alternated cooling and heating treatment; 

1000W: denoted 1000W microwave power; PCNS: Porous g-C3N4 nanosheet; SL g-C3N4: Atomic single layer g-C3N4. 
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Table 4. Recent Advances in Cr(VI) Reduction by g-C3N4-based Photocatalysts 

Composites Improvement strategy Bandgap (eV) Light source 

Concentration of 

Cr(VI) (mg L-1) 

Adsorption and 

catalytic time (min)

Degradation 

efficiency (%)

Rate constant

(k, min-1) Recycling Ref. 

PCN-S 
Phosphorus doped and 

morphology adjustment 
2.92 300 W Xe, λ > 400 nm 20 120 ~100 - 5 [199] 

g-C3N4/MIL-

100(Fe) 
Type-II heterojunction - 300 W Xe, λ > 400 nm 10.0 80 97 0.037 5 [200] 

PANI/C3N4 
Acid doped and morphology 

adjustment 
3.62 350 W Xe, λ > 400 nm 100 10 90 4.76 ± 0.058a 3 [201] 

BPTCN Morphology adjustment 0.063 300 W Xe, λ > 420 nm 10 60 94.71 0.0404 6 [117] 

Fe3O4/C/g-C3N4 Fe3O4 deposition - 300 W Xe, λ ≥ 420 nm 20 100 100 0.00355 4 [202] 

BBC Metal deposition 2.13 300 W Xe, λ > 400 nm 20 60 - 0.01589 4 [203] 

PANI@ZFCN PANI-sensitized 1.7 300W Xe 20 120 97.8 0.0326 4 [204] 

GO/g-C3N4/MoS2 
Morphology adjustment and 

type-II heterojunctions 
1.51 300W Xe, λ > 420 nm 10 120 ~80 0.0123 - [205] 

g‑C3N4/BiOI Type-II heterojunction - λ > 420 nm - 150 ~100 0.0261 - [206] 

(P, Mo)-g-C3Nx P and Mo co-doped 2.10 300 W Xe, λ ≥ 420 nm 100 120 95 0.0229 4 [207] 

Ag/g-C3N4/V2O5 
Noble metal deposition and Z-

scheme heterojunction 
2.26 Solar light - 60 33 0.373 3 [208] 

Co9S8/g-C3N4 Z-scheme heterojunction 2.42 500W Xe lamp 10 180 - 0.6311 5 [209] 

BPCMSs/g-C3N4 Heterojunction - 300 W Xe, λ > 320 nm 10 240 ~75 - 4 [210] 

g-C3N4/TiO2 Type-II heterojunction 3.26 300 W Xe, λ > 420 nm 400 - - 0.35 - [211] 

SA- g-C3N4/CA Morphology adjustment 2.98 300W Xe, 380–750 nm 5 100 95 - - [212] 

MIL-101(Fe)/g-

C3N4 
Z-scheme heterojunction -- 

150W halogen cold light, 

λ > 420 nm 
20 60 92.6 0.0432 - [213] 

a removal capacity (mgꞏmin-1ꞏgc
-1); 300 W Xe: 300 W Xenon lamp; PCN-S: phosphorus-doped porous ultrathin carbon nitride nanosheets; PANI: polyaniline; BPTCN: BP quantum dots (BPQDs)/ 

tubular g-C3N4 (TCN); BBC: Bi modified Bi2S3 pillared g-C3N4. 
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4.1 Removal of antibiotics and pesticide 351 

For atomic-scale 2D/2D heterostructures, due to controllable molecular layer thickness [214-352 

216] and the face-to-face contact [217,218], the photogenerated carriers can be controlled and 353 

a greater interfacial area may be formed to accelerate the separation of photoelectron-hole pairs. 354 

To illustrate, the specific degradation pathway of ibuprofen (IBF) by 2D/2D UTCB 355 

heterostructures is shown in Fig. 7a [142], major intermediate products with m/z of 238, 221, 356 

and 178 are produced during the hydroxylation process of IBF, as well as, the intermediates 357 

with m/z of 162 and 133 are produced by direct decarboxylation. The photocatalytic 358 

mechanism of UTCB-25 heterojunction obtained by DFT calculation is shown in Fig. 7b and 359 

c. The open surface [BiO]+ layers are stimulated by light to produce holes and transferred to 360 

the surface of ug-CN to react with IBF. The middle [WO4]2− layers are excited by light to 361 

produce electrons, and transferred to the edge of the monolayer for the reduction reaction. 362 

Meanwhile, the photoelectrons in the ultrathin g-C3N4 nanosheet are transferred to the single-363 

layer Bi2WO6 nanosheet, and the electrons gather in the CB of single-layer Bi2WO6 nanosheet 364 

react with the O2 to form •O2
 ‒ radical, which could continuously degrade IBF.  365 
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Fig. 7. Photocatalytic degradation of ibuprofen by atomic scale g-C3N4/Bi2WO6 2D/2D 366 
heterojunction. (a) Photocatalytic degradation of Ibuprofen (IBF); The LUMO (top) and 367 
HOMO (bottom) states of the monolayer Bi2WO6 nanosheets (b); Photocatalytic mechanism 368 
scheme of UTCB heterojunctions under visible light irradiation (> 420 nm) (c). Adapted with 369 
permission from ref. [142]. Copyright 2017 Elsevier B.V. 370 

How to develop efficient and stable photocatalysts to obtain the widest possible spectrum of 371 

the solar spectrum is still a challenge [219-221]. To prepare photocatalysts with enhanced full 372 

spectral response range, a ternary Ag/N-doped graphene quantum dots/g-C3N4 nanocomposite 373 

(AGCN) was prepared for the first time in 2017 [222]. The ratio between components of the 374 
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composite material is very important, and the optimal ratio can obtain higher photocatalytic 375 

performance [222]. The g-C3N4 doped with 0.5% N-doped graphene quantum dots and 2.0% 376 

Ag NPs has the highest photocatalytic activity under the same condition, the photocatalytic 377 

degradation rate of tetracycline (TC) reaches 92.8% in the full spectrum, and the degradation 378 

rate of tetracycline can reach 31.3% under infrared light. Because the bandgap of the prepared 379 

AGCN-4 has a narrower bandgap than the original g-C3N4 and other similar materials, AGCN-380 

4 can absorb more visible and even near-infrared light for the degradation of pollution in water. 381 

Meanwhile, because of the enhanced optical response capability of N-doped graphene quantum 382 

dots, the excellent electron transport capability of Ag, and the cooperative effect of both, 383 

AGCN-4 has the best electronic conductivity and the lowest PL strength.  384 

The following year, the P-doped CN/CN isotype heterojunction (PCN/CN) was prepared to 385 

enhance the photocatalytic degradation efficiency of TC in water [75]. The built-in electric 386 

field induced between CN and PCN leads to the transfer of photoelectrons from PCN to CN, 387 

which promotes stronger charge detach and increases the light absorption range, thus greatly 388 

enhancing the photocatalytic degradation activity of TC. Therefore, the photocatalytic 389 

degradation rate of TC by PCN/CN in water was 3.8 times that of the original CN [75]. In the 390 

same year, we introduced barbituric acid and melamine in the process of melamine 391 

polymerization to synthesize a C-doped C3N4 (BC-C3N4) nanocomposite for the mineralization 392 

of sulfamethazine (SMZ) under visible light [144]. Because nonmetallic doping changes the 393 

basic properties of C3N4 polymers and makes them have higher photocatalytic degradation 394 

capability, BCM-C3N4 showed a fourfold increase in the degradation rate of SMZ within one 395 

hour compared to pure C3N4 [144]. 396 
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Recently, single-atom Co-doped polymerized CN (Co-pCN) was prepared by cyclization 397 

process with urea and Co(II) acetylacetonate as precursors (Fig. 8a) for photocatalytic 398 

degradation of oxytetracycline (OTC) [101]. First, 2-hydroxy-4,6-dimethylpyrimidine (HDMP) 399 

forms by the cyclization of acetylacetone with urea and the tri-s-triazine ring forms by urea. 400 

Then, a condensation reaction was performed between HDMP and the tris-triazine ring. Finally, 401 

the Co-pCN formed by the condensation product chelates with Co2+. As shown in Fig. 8b-d, 402 

monoatomic Co successfully fixed on the pCN in the form of valence bond, and the 403 

corresponding structure is also proved by the optimal DFT calculation model (Fig. 8e). The 404 

interaction between monoatomic Co and pCN expands the visible light absorption region, 405 

increases photoelectron density, and promotes photoelectrons transfer, thus significantly  406 

improving the degradation efficiency of photocatalytic OTC (Fig. 8f and g). The core active 407 

substances in the degradation process by Co-pCN photocatalyst are 1O2, h+, •O2
 ‒, and •OH 408 

(Fig. 8h). Meanwhile, as shown in Fig. 8i, the photocatalytic degradation efficiency of OTC 409 

has not decreased significantly in the following four operations, which proves that the Co-PCN 410 

has excellent catalytic stability.  411 
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Fig. 8. Photocatalytic degradation of refractory antibiotics by single-atom cobalt doped C3N4. 412 
(a) The proposed synthetic process of Co–pCN. Co k edge XANES spectra of Co(1.28%)–pCN 413 
and other catalysts (b); Corresponding Fourier transform spectra of Co(1.28%)–pCN and other 414 
catalysts (c); EXAFS r space-fitting curve of Co(1.28%)–pCN (Insert: k space-fitting curve of 415 
Co(1.28%)–pCN) (d); Optimized DFT calculation model of Co(1.28%)–pCN (e); 416 
Photocatalytic degradation efficiency of OTC by Co(1.28%)–pCN and other catalysts under 417 
visible light irradiation (f); pseudo-first-order kinetic fitting curves and the corresponding 418 
kinetic constants (g); The corresponding kinetic constants and the relative contributions of 419 
different quenchers (h); Four cycles of degradation of OTC by Co(1.28%)–pCN (i). Adapted 420 
with permission from ref. [101]. Copyright 2020 WILEY-VCH. 421 

Noteworthily, a “double Z-Scheme” system for degradation of antibiotic, as shown in Fig. 422 

9a, both P-doped ultrathin CN (PCNS) and BiVO4 can be stimulated by visible light to produce 423 

photoexcited carries, then, the photoelectrons generated by CB of BiVO4 are transferred to the 424 

metal Ag [223]. Due to the SPR effect of metal Ag, an enhanced local electric field can be 425 

established on the surface of the Ag, which promotes the transport of photoelectrons on the Ag 426 

to the VB of PCNS. Ternary Ag@PCNS/BiVO4 photocatalyst with dual Z-Scheme can degrade 427 
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CIP in water under visible light with a degradation rate of 92.6% [223]. As shown in Fig. 9b-428 

e, the holes, •OH, and •O2
 ‒ are major active sites in the CIP degradation process by 429 

Ag@PCNS/BiVO4 photocatalysts. 430 

 431 
Fig. 9. The CIP degradation using Ag modified phosphorous doped ultrathin g-C3N4 432 
nanosheets/BiVO4 photocatalyst. (a) Photocatalytic reaction mechanism and degradation 433 
pathway of CIP by nanocomposites under visible light irradiation. (b and c) Active radical 434 
species trapping experiments for the photocatalytic degradation of CIP and the corresponding 435 
photocatalytic removal efficiency over Ag@PCNS/BiVO4 nanocomposite under visible light  436 
irradiation. (d and e) ESR spectra of radical adducts trapped by DMPO (•O2

 ‒ and •OH) in 437 
Ag@PCNS/BiVO4 nanocomposite in the dark and with the visible light irradiation of 5 min, 438 
10 min, and 15 min. Adapted with permission from ref. [223]. Copyright 2017 Elsevier B.V.  439 

The “double Z-Scheme” system is also used for the degradation of quintessential pesticides, 440 

such as neonicotinoid pesticides. Compared with the single g-C3N4 and the corresponding 441 

binary materials, the dual Z-scheme AgI/Ag3PO4/g-C3N4 (AAC) composite has a better 442 

photocatalytic activity for the degradation of nitenpyram (NTP) [160]. As shown in Fig. 10a, 443 

the AAC composites synthesized by an in-situ ion exchange strategy. As the dual Z-scheme 444 
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mechanism improving the separation efficiency of photogenerated carriers (Fig. 10b), AAC 445 

generates more superoxide free radicals for photocatalytic degrading of NTP, so AAC has 446 

higher photodegradation efficiency. The apparent rate constant of photocatalytic degradation 447 

of NTP was up to 0.76 min-1, which was 16.2 times that of pure g-C3N4 (Table 1). The possible 448 

degradation pathways of NTP are shown in Fig. 10c, which are continually attacked by the 449 

active species •O2
 ‒ and eventually completely mineralized.  450 

Fig. 10. Degradation of nitenpyram using dual Z-scheme g-C3N4/Ag3PO4/AgI composite 451 
photocatalyst. (a) Schematic illustration of the preparation process of AgI/Ag3PO4/g-C3N4 452 
photocatalyst; (b) Proposed photocatalytic mechanism of AgI/Ag3PO4/g-C3N4 composite. (c) 453 
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Proposed possible degradation pathway of NTP in the presence of the AAC. Adapted with 454 
permission from ref. [160]. Copyright 2019 Elsevier B.V. 455 

4.2 Degradation of organic dyes 456 

Organic dyes (such as RhB, MB, azo dyes, etc.) in water mainly come from the textile 457 

industry [73,166,170]. Due to their high solubility and hard ionization, organic dyes can 458 

accumulate in aquatic organisms [73]. Meanwhile, long-term exposure of organisms to these 459 

organic dyes increases their risk of developing cancer [73]. G-C3N4-based photocatalysts can 460 

degrade organic dyes in water efficiently and stably. Typically, g-C3N4/Ti-461 

benzenedicarboxylate composites (CMTi) were prepared by the simple solvent thermal method 462 

to degrade RhB dyes [163]. Compared with single Ti-benzenedicarboxylate composites and g-463 

C3N4, CMTi has enhanced photocatalytic ability to degrade RhB dyes in visible light, and when 464 

the g-C3N4 content is 7.0 wt%, the composite material (CMTI-2) has the best photocatalytic 465 

degradation rate of RhB of 0.0624 min-1. The main reasons for the enhancement of 466 

photocatalytic degradation efficiency for RhB may be ascribed to the synergistic catalysis of 467 

Ti-benzenedicarboxylate composites and g-C3N4, as well as the indirect photosensitization of 468 

RhB itself. Meanwhile, these materials can still maintain photocatalytic activity stability and 469 

crystal stability after 5 cycles of use, indicating that these materials are expected to resist 470 

photocorrosion in continuous photocatalytic water purification.  471 

Currently, the enhancement of g-C3N4-based photocatalysts and their application in the 472 

photodegradation of organic dyes in water are progressing rapidly (Table 2). To illustrate, to 473 

enhance the photocatalytic degradation capability of organic dyes at near-infrared wavelengths 474 

of photocatalytic materials, we prepared a novel Sb2S3/ultrathin g-C3N4 heterostructure (CNS) 475 
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[164], which photocatalyst degrades methyl orange (MO) at a rate of 0.0103 min-1 by near 476 

infrared spectroscopy. However, the specific photocatalytic degradation process, active species, 477 

and degradation intermediates have not been well explained [224]. The commonly used 478 

spectroscopic methods can only reflect the change of chromogenic groups with time before and 479 

after the photocatalytic process, but cannot prove the photocatalytic kinetic process, and cannot 480 

monitor the oxidation process of the intermediate [225]. 481 

For this purpose, Huang’s group coupled photocalorimetry-fluorescence spectroscopy, 482 

photocalorimeter, and laser-induced fluorescence spectroscopy, and studied the photocatalytic 483 

kinetics, active species, and degradation intermediates of RhB in the g-C3N4@Ag@Ag3PO4 484 

heterojunction system [226]. As shown in Fig. 11a, monochromatic light entered the sample 485 

room and reference room through light fiber, and the photoinduced fluorescence originating 486 

from the photocatalysis in the sample cell through a fiber-optic spectrometer to data collection 487 

and control system. That is after the incident light is converted to parallel light through a lens, 488 

it passes through a filter and a convex lens and is finally focused on the sample unit (Fig. 11b), 489 

at the same time, the light-induced fluorescence is transmitted to the spectrometer through the 490 

scattering pathway and the reflection of the mirror respectively (Fig. 11b). This method can not 491 

only prove that photocatalysis is a pseudo-zero-order process, but also investigate 492 

photocatalytic reaction pathways and rate-determining steps. During the degradation of RhB 493 

by g-C3N4@Ag@Ag3PO4 photocatalysts, three major thermodynamic processes happened (Fig. 494 

11c and d): (ab) photoexcited RhB molecule and photocatalyst produced superoxide radical 495 

and hydroxyl group; (bc) equilibrium between endothermal photoexcitation and exothermal 496 

RhB photodegradation; and (cd) unchanging exothermal RhB photodegradation process. In the 497 
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photocatalytic degradation procedure, the g-C3N4@Ag@Ag3PO4 system produced hydroxyl 498 

groups and superoxide radicals through the Z-scheme mechanism for RhB degradation. 499 

Meanwhile, corresponding to the cd stage, the final chromophore cleavage process is a rate-500 

determining step (Fig. 11e), which leads to the photocatalytic degradation process of RhB.  501 

Fig. 11. A pseudo-zero-order in degradation of rhodamine B by Z-scheme g-502 
C3N4@Ag@Ag3PO4 photocatalyst. Schematic illustration of a photocalorimeter-fluorescence 503 
spectroscopy (a) and optical probe in sample cell (b); Heat changes (c) and heat flow curves of 504 
RhB photocatalysis over CN, CNAP1, and CNAAP30% (d). (e) Degradation pathway of RhB 505 
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dye over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites. Adapted with permission from ref. 506 
[226]. Copyright 2017 Elsevier B.V. 507 

4.3 Sterilization and disinfection 508 

Photocatalytic technology is a sustainable method for the inactivation of water-borne 509 

pathogens [227-229]. In this regard, nanoscale photocatalysts have exhibited great potential for 510 

photocatalytic sterilization and disinfection [230]. In the process of photocatalysis, 511 

photocatalyst mainly realizes the purpose of sterilization and disinfection by destroying 512 

pathogen groups and deconstructing the cell structure of individual pathogens [231]. Currently, 513 

the commonly used nanoscale metal-based nanomaterials may cause secondary pollution, 514 

which has aroused the concern of environmental management personnel and environmentalists 515 

[8,232,233]. Therefore, seeking efficient metal-free photocatalysts or selecting stable materials  516 

as carriers of metal-based catalysts for the inactivation of water-borne pathogens is of great  517 

significance.  518 

Given that adjustable properties, g-C3N4-based photocatalyst can not only solve the key 519 

bottleneck of low activity caused by the rapid recombination of photogenerated carriers of 520 

original g-C3N4, but also can be used as a carrier or synergistic component of a metal 521 

photocatalyst to avoid the secondary pollution caused by metal ion leaching. Recent advances  522 

in g-C3N4-based photocatalyst photocatalytic sterilization and disinfection are summarized in 523 

Table 3. The g-C3N4-based photocatalyst generates charge carriers under sunlight irradiation 524 

that react with oxygen and water molecules, resulting in a variety of active species (h+, •OH, 525 

1O2, •O2
 ‒, and H2O2) to inactivate pathogens in water (Fig. 12). To improve the efficiency of 526 

g-C3N4-based photocatalysts for photocatalytic inactivation of water-borne pathogens, one is 527 
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to change the interface between g-C3N4-based photocatalysts and the pathogen, use the 528 

photocatalyst surface to effectively capture the pathogen, and use the holes on the photocatalyst 529 

surface to inactivate the pathogen; The other is to adjust the photocatalytic properties of g-530 

C3N4-based photocatalysts to increase the content of 1O2, •O2
 ‒, and H2O2 in the water 531 

environment, so that the photocatalyst can effectively inactivate the pathogen without touching 532 

the pathogen.  533 

 534 

Fig. 12. Schematic diagram of the sterilization and disinfection mechanism of g-C3N4-based 535 
photocatalysts. Many active species such as h+, 1O2, •O2

 ‒, and H2O2 are produced by g-C3N4-536 
based photocatalysts which inactivate pathogen in the water body. 537 

Polyethylenimine (PEI) PEI is a cationic polymer with rich amine groups. Modification of 538 

the surface of g-C3N4 nanosheets by PEI can greatly improve the photocatalytic disinfection 539 

activity of the g-C3N4-based composite [183]. As shown in Fig. 13a, the amine group is 540 

protonated in water, making the surface of the PEI-modified g-C3N4-based composites (PEI/ 541 

C3N4) positively charged, which is conducive to capturing the pathogen in water, at the same 542 
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time, PEI on the g-C3N4 surface also promotes the separation of photogenerated electron-hole 543 

pairs, and promotes the generation of H2O2 and •O2 
−. Scanning electron microscopy (SEM, 544 

Fig. 13b-d) showed that PEI/C3N4 was able to completely attach to the surface of pathogen 545 

cells compared with pure g-C3N4 which could not contact pathogen cells. This is because the 546 

abundant protonated groups on the surface of PEI/C3N4 provide anchoring sites for pathogen 547 

cells through electrostatic binding. This is also demonstrated by the atomic force microscope 548 

(AFM) measurement curve shown in Fig. 13e-g. Through this strategy, obtained PEI/C3N4 549 

composites exhibited very high inactivation efficiency for E. coli and E. faecalis under 550 

simulated light irradiation (Table 3, PEI/C3N4).  551 
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 552 

Fig. 13. PEI-modified g-C3N4-based composites for rapid photocatalytic water disinfection. (a) 553 
Illustration of the roles of PEI on g-C3N4 for improved photocatalytic bactericidal activity. 554 
SEM images of initial E. coli cells before mixing with photocatalysts (b), E. coli cells after 555 
mixing with C3N4 suspension (c), and after mixing with PEI/C3N4 suspension (d) for 45 min 556 
under dark. Illustration for the AFM force curve measurement process (e); Approach-Retract 557 
force curves of bare AFM Si probe towards E. coli cells (f); Approach-Retract force curves of 558 
PEI/C3N4 coated AFM Si probe towards E. coli cells (g). Adapted with permission from ref. 559 
[183]. Copyright 2020 Elsevier B.V. 560 

Meanwhile, considering the influence of electron-withdrawing groups on the charge 561 

distribution of g-C3N4, the photogenerated hole-electron pair recombination can be inhibited 562 

by selectively introducing electron-withdrawing groups at the edge of g-C3N4 nanosheets to 563 

construct an anisotropic internal electric field in a 2D plane [182]. Compared with the charge 564 

loss at the edge of pure g-C3N4 nanosheets (Fig. 14d), the edges of g-C3N4-based composites 565 
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functionalized by -COOH and -C=O can accumulate electrons, thus increasing the thickness of 566 

the space charge region and strengthening the band curvature (Fig. 14a), and ultimately inhibits 567 

the recombination of photogenerated electron-hole pairs. Meanwhile, the photodeposition of 568 

Pt metal further confirms that edge functionalized -COOH and -C=O can accelerate charge 569 

transfer and enhance band bending this result (Fig. 14b, c, e, and f). The catalytic membrane 570 

prepared by the marginal functionalized g-C3N4 nanosheet (F-g-C3N4) could inactivate 99.9999% 571 

of E. coli within 30 min (Fig. 14g, a: F-g-C3N4-30; b: g-C3N4-r; c: F-g-C3N4-45; d: F-g-C3N4-572 

60; e: bulk-g-C3N4). The cell structure of E. coli was gradually destroyed 45 min after F-g-573 

C3N4-30 treatment under sunlight (Fig. 14h-k). Furthermore, compared with the currently 574 

reported g-C3N4-based photocatalyst (Table 3), F-g-C3N4-30-EP has ultra-high stability (stable 575 

cycling for more than 40 times) and practicability. F-g-C3N4-30-EP can be integrated into 576 

plastic film bags and fixed bed reactors for water purification production (Fig. 14l and m), 577 

which provides the basis for the industrial development of fully automated photocatalytic water 578 

disinfection systems.  579 
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 580 

Fig. 14. Edge-functionalized g-C3N4-based photocatalyst for clean water supply. (a–f) 581 
Schematic diagram of possible depletion layer and the band-bending effects near the edge of 582 
(a) g-C3N4-30 and (d) g-C3N4-r. Shown are TEM images (b and e) and high-angle annular dark 583 
field (HAADF) images (c and f) of g-C3N4-30 and (e) g-C3N4-r after photo-deposition of Pt 584 
nanoparticles after photo-deposition of Pt nanoparticles. Point A is the burning trace of the 585 
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electron beam during HAADF measurement. (g) full-spectrum solar-light irradiation. (h–i) 586 
TEM images of E. coli with F-g-C3N4-30 as the photocatalyst. (l) Diagrammatic sketch of the 587 
modification process utilizing F-g-C3N4-30-EP coated onto a polyethylene bag modified by a 588 
silane coupling agent. (m) Flowing water disinfection device modified by nano-coating of F-589 
g-C3N4-30-EP. Adapted with permission from ref. [182]. Copyright 2018 Elsevier B.V. 590 

Analogously, the interface region near the CeO2 component in CeO2/PCN can also capture 591 

electrons, thus forming an electron accumulation layer and causing band bending [185]. 592 

Meanwhile, the electron depletion layer is formed in the interface region near the PCN 593 

component due to the loss of electrons, and the energy band is bent upward. Compared with 594 

CeO2, the Fermi level of PCN is higher, which promotes the formation of an internal electric 595 

field at the CeO2/PCN heterojunction and forms an S-shaped electron transport path. This 596 

mechanism is not only beneficial to the spatial separation of photoelectric-hole pairs, but also 597 

makes great use of the photoelectron and photoelectric hole in space. Meanwhile, the 598 

photoelectron reacts with O2 molecules to produce a large number of •O2
 ‒. These active 599 

species (h+, •O2
 ‒) can effectively destroy the bacterial cell wall, and further kill the pathogen. 600 

To illustrate, the S-scheme heterojunction photocatalyst can effectively inactivate 88.1% S. 601 

aureus within 15 min under visible light irradiation (Table 3, CeO2/PCN). 602 

Recently, combined with theoretical calculations, Zhou’s group well predicted the role of 603 

nitrogen defects in the modulation of energy level and photocatalytic properties, and prepared 604 

porous nitrogen defects g-C3N4 ultrathin nanosheets (CN-x, x denoted the pH value) by thermal 605 

condensation of precursor after lyophilization [234]. Among them, the optimized CN-4 has the 606 

best photocatalytic disinfection effect (4.80 log10 CFU mL−1 for E. coli; 4.24 log10 CFU mL−1 607 

for S. aureus) [234]. The hydrophilicity and protonation of the surface of CN-4 facilitate the 608 

capture of pathogens in water, and the sharp edge of the porous CN-4 nanosheet can destroy 609 
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the cell membrane of E. coli attached to its surface. Meanwhile, abundant pores and nitrogen 610 

vacancies in CN-4 provide more active sites, which accelerate charge diffusion and transfer, 611 

and thus accelerate the generation of active species. These photosensitive active species 612 

produced by CN-4 attack pathogen cells, damaging their membranes, and attacking the internal 613 

protective systems, ultimately causing pathogen to die. 614 

4.4 Reduction of hexavalent chromium 615 

Heavy metal ions contained in the wastewater of chemical plants have strong photothermal 616 

stability and biodegradability, so it is difficult to remove them completely. Accumulation of 617 

them through the food chain can cause damage to aquatic life and humans [8,209,230]. 618 

Hexavalent chromium Cr(VI) is a quintessential example, produced in various industrial 619 

activities such as metal processing, electroplating, tanning, and steel production, which has 620 

high toxicity and carcinogenicity [235]. Its allowable value in drinking water is 0.05 mg L-1 621 

[236]. Therefore, the degradation of Cr(VI) in wastewater is the focus of people’s attention. 622 

Presently, one of the most ideal methods is photocatalytic convert Cr(VI) to trivalent chromium 623 

Cr(III) [237]. 624 

Due to the block-like and layered structure, the contact between Cr(VI) and the catalytic 625 

active substances is prevented, so the reduction of Cr(VI) by g-C3N4 photocatalysts is less 626 

efficient in actual water body remediation. To solve this problem, A series of bio-based carbon 627 

microspheres (BPCMSs) coupled g-C3N4 nanosheets (g-C3N4/BPCMSs NSs) composite 628 

materials were prepared to recover most of the total chromium (T-Cr) from wastewater through 629 

a combination of adsorption and photo-reduction [210]. As shown in Fig. 15a and b, G-C3N4 630 
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prepared by high-temperature polycondensation of melamine has more than five layers of the 631 

layered structure, and BPCMSs have many spherical microstructures uniformly distributed. 632 

Meanwhile, BPCMSs have high thermal stability, and they as a dispersant can effectively 633 

control the structure construction of the composites in the high-temperature polycondensation 634 

process (Fig. 15c and d). Compared with other modified g-C3N4-based photocatalysts (Table 635 

4), the prepared g-C3N4/BPCMSs composites can totally remove Cr(VI) in water and adsorb 636 

most of the T-Cr in water. Furthermore, it is worth noting that the recycled Cr3+/BPCMSs/g-637 

C3N4 composites have higher photocatalytic performance than the fresh composite. Especially 638 

under acidic conditions, the secondhand Cr3+/BPCMSs/g-C3N4 composites can show strong 639 

reduction and degradation efficiency in Cr(VI)/4-FP system. Meanwhile, the recovered g-640 

C3N4-based composites have more stable photocatalytic activity, which is due to the 641 

electrostatic interaction of surface CeOH and the stable adsorption of Cr(VI) on BPCMSs (Fig. 642 

15e). As shown in Fig. 15e, the photocatalysts are excited by light to produce e--h+ pairs. Then, 643 

oxidizing agents form an oxidizing active intermediate, and reducing agents form reducing 644 

active intermediates under photogenic holes and electron redox. After the photocatalytic 645 

reaction is completed, e- are transferred from reducing active intermediates to oxidizing active 646 

intermediate, and the photocatalyst returns to electric neutrality.  647 
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 648 

Fig. 15. Biochar-coupled g-C3N4-based photocatalyst for reduction of hexavalent chromium 649 
from water in single and combined pollution systems. FESEM images of as-prepared g-C3N4 650 
(a), BPCMSs (b), BPCMSs(40)/g-C3N4 NSs (c), and BPCMSs(160)/g-C3N4 NSs (d). (e) The 651 
proposed fabrication route of BPCMSs/g-C3N4 NSs and recycled Cr3+/BPCMSs/g-C3N4 NSs 652 
as well as the transfer of photogenerated electrons in different photocatalytic systems. Adapted 653 
with permission from ref. [210]. Copyright 2018 Elsevier B.V. 654 

CoFe-LDH (LDH: layered double hydroxide) in the composite material has surface 655 

adsorption, which can quickly and in large capacity absorb Cr(VI) in water, and g-C3N4 656 

nanosheets have many catalytic active sites that can in-situ reduce Cr(VI) [238]. The two form 657 

a typical magnetic recoverable heterojunction system (calcined CoFe-LDH/g-C3N4), which is 658 

favorable to the detachment of photoelectronic-holes, thus promoting the photoactivity of 659 

CoFe-LDH/g-C3N4. CoFe-LDH in the nanocomposite can be used to adsorb Cr(VI), and the 660 
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free radicals generated by the nanocomposite under visible light irradiation. Then, the free 661 

radicals can be used to reduce Cr(VI). Compared with other g-C3N4-based composites (Table 662 

4), CoFe-LDH/g-C3N4 has a relatively strong catalytic stability and can maintain a high 663 

catalytic activity in the following ten operations.  664 

Aside from the above examples, recently, we deposited black phosphorus quantum dots 665 

(BPQDs) in porous g-C3N4 tubes to prepare metal-free composite nanomaterial (BPTCN) for 666 

photo-reduction of Cr(VI) in wastewater [117]. Compared with BPQDs (17.61%), CN 667 

(22.49%), and TCN (81.59%), the BPTCN has a better photo-reduction of Cr(VI) with 94.71%. 668 

Meanwhile, the color of the aqueous solution containing Cr ions can be seen in the illustration 669 

from purplish red to colorless, which appears that the sewage may have been purified. 670 

Compared with CN (0.00369 min-1) and TCN (0.0262 min-1), BPTCN showed the highest 671 

apparent removal rate constant of Cr(VI), which was 0.0404 min-1. Furthermore, the pH value 672 

of the water body is also one of the important aspects affecting the reduction rate of 673 

photocatalytic Cr(VI) in the process of photodegradation. When the pH value was reduced from 674 

5.65 to 2.65, the photo-reduction rate was increased from 91.25%/60 min to 93.11%/30 min, 675 

respectively. The obvious improvement of photocatalytic effect may be mainly due to the 676 

following two reasons [199,200,239]: first, under acidic conditions, H+ in the solution is 677 

conducive to the reduction of Cr(VI) (Equ. 1); Second, under neutral or alkaline conditions, 678 

Cr(OH)3 precipitation (Equ. 2) can often cover the photocatalyst’s catalytic active site, thus 679 

inhibiting its photocatalytic activity.  680 

Cr2O7
2− + 14H+ +6e− → 2Cr3+ +7H2O (1) 
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CrO4
2− +4H2O+ 3e− → Cr(OH)3 + 5OH− (2) 

Therefore, under acidic conditions, BPTCN can reduce Cr ions in raw water better under light  681 

conditions.  682 

4.5 Metal-free Photocatalysis 683 

Compared with traditional metal-based photocatalysts such as metal oxides and metal 684 

sulfides, metal-free polymeric g-C3N4 exhibit long stability under light irradiation and cost 685 

advantages [77,240,241]. As a metal-free photocatalyst, g-C3N4 can efficiently inactivate 686 

pathogens in water under visible light irradiation [242], providing a cost-effective approach for 687 

sustainable water treatment technology. However, pure g-C3N4 materials could be deactivation 688 

due to oxidative corrosion after prolonged exposure to light radiation and water [108]. 689 

Zhuang’s group has synthesized a ternary metal-free g-C3N4-based photocatalyst using large-690 

size graphene as the matrix by a simple hydrothermal method [243]. Because the steric 691 

hindrance effect of graphene blocks water and oxygen, the tight connection between graphene 692 

and carbon dots increases the specific surface area of the material, and the synergistic effect 693 

between the components accelerates the separation of photogenerated electron-hole pairs, the 694 

ternary metal-free g-C3N4-based photocatalyst not only has high photocatalytic oxidation of 695 

organic pollutants and reduction of heavy metals but also can resist photocorrosion to enhance 696 

photostability of the material in photocatalytic water purification. 697 

  In 2020, Sudhaik et al. prepared graphene supported g-C3N4 for metal-free photoactivation 698 

of peroxymonosulfate [240]. Compared with pure g-C3N4, the metal-free g-C3N4-based 699 

photocatalyst showed higher photocatalytic degradation (94%) of malathion and efficient 700 
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photocatalytic inactivation of E. coli [240]. Recently, Sahu et al. prepared metal-free oxygen-701 

rich g-C3N4 for complete mineralization and degradation of organic pollutants under visible 702 

light [244]. The composition and structure of the metal-free g-C3N4-based photocatalyst can be 703 

adjusted by acid treatment under ultrasonication to increase its specific surface area and pore 704 

structure, visible light absorption capacity as well as the separation efficiency of 705 

photogenerated carriers. The metal-free g-C3N4-based photocatalysts, which are composed of 706 

elements (such as C and N) rich in the earth, meet the requirements of sustainable applications, 707 

and require further exploration and accumulation to assure that these materials have highly 708 

activity and stability in practical applications. 709 

5. Chemical and Photocatalytic Stability 710 

In the term of application, the recycling ability (Table 1-4, recycling) of g-C3N4-based 711 

photocatalysts is an important evaluation criterion. Incorporating g-C3N4-based photocatalysts 712 

into the photocatalytic water purification module with the continuous flow is required. This 713 

section briefly describes the stability of g-C3N4-based photocatalysts.  714 

The g-C3N4 is a 2D flaky tri-s-triazines linked by tertiary amines, which can be found in air 715 

below 600℃ [245]. However, the thermal stability of g-C3N4 is slightly affected by different 716 

preparation processes, which may be caused by different degrees of condensation [47,246,247]. 717 

Notably, g-C3N4 nanocrystals are usually negatively charged, which allows them to suspend 718 

stably in an aqueous solution without aggregation and precipitation [248-250]. Meanwhile, 719 

they also have good dispersion in strong acid solutions, and because of the strong van der Waals  720 
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interaction layer, g-C3N4 can maintain structural and chemical stability in strong acid solutions 721 

[245,251]. 722 

In terms of composite materials, Shi et al. integrated g-C3N4 nanosheets and the materials  723 

with interfacial hydrogen bond interactions into composite materials to improve the overall 724 

thermal stability [252]. Wang et al. confirmed that g-C3N4 combined with reduced graphene 725 

oxide can form a composite modified film with higher hydration properties [253]. As well as, 726 

through fine adjustment, the compensating effect between the components of the composite 727 

can enhance the activity and stability of the composite, to keep the crystal structure and surface-728 

active groups of the composite unchanged in the catalytic process [67,212,246]. Furthermore, 729 

compared with the single Ag3PO4 material, Ag3PO4@g-C3N4 core-shell composite has higher 730 

stability in the process of photocatalytic organic dyes in water, which demonstrates the 731 

supporting effect of g-C3N4 shell on Ag3PO4 after the photocatalytic reaction [254].  732 

6. Conclusions and Perspectives 733 

As one of the candidate photocatalytic materials in the water purification field, g-C3N4-based  734 

photocatalysts have received great attention over ten years. Investigations of g-C3N4-based 735 

photocatalysts have provided a rich database of their design and synthesis as well as 736 

environment-related applications. Various improved strategies to promote the performance and 737 

ability of g-C3N4-based photocatalysts are introduced in this review. Undoubtedly, the g-C3N4-738 

based composites have unlimited potential for further improvement in the crystal structure, 739 

light absorption capacity, electronic properties, and energy band arrangement.  740 
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At the atomic level, g-C3N4 can adjust HOMO and LUMO by element doping directionally 741 

to reduce the bandgap of composite photocatalytic materials and enhance visible light capture. 742 

At the molecular level, g-C3N4 can modify the link unit through copolymerization to expand 743 

the visible light response, increase the electron-hole mobility, and improve the redox ability. 744 

To improve the photoactivity, more types of g-C3N4-based Z-scheme/S-scheme heterojunction 745 

and 2D g-C3N4-based photocatalysts are needed, which can hinder the photoinduced carrier 746 

recombination rate and promote charge migration and separation. Improving the photocatalytic 747 

stability of g-C3N4-based materials includes not only increasing the number of times in 748 

complex environmental conditions and strong light irradiation, but also reducing the quality 749 

loss in the continuous flow photocatalysis process. Suitable means to control the nanoparticle 750 

size on the catalyst surface is deficient. Therefore, exploring different functionalization 751 

strategies and specific chemical groups is needed to achieve the accurate adjustment of 752 

interface contact points to enhance the anchoring capability of g-C3N4. 753 

Although considerable potential material has been reported to date, the field of research in 754 

g-C3N4-based composites for photocatalytic water purification is still at the preliminary stage 755 

and far from meeting the demand of the industry. The theoretical calculation reveals the internal 756 

properties of g-C3N4-based photocatalysts and explores the effect of modification strategies on 757 

the overall performance of photocatalysts, accelerating the development of suitable g-C3N4-758 

based photocatalysts. To construct the composite material model to offer a theoretical 759 

foundation for similar composite materials, the foresight to choose the parameters of the 760 

calculation is needed. The adsorption of small organic molecules and heavy metal ions by g-761 

C3N4-based composites needs to be further investigated. Revealing the reasons for the 762 
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enhancement of photoactivity of g-C3N4-based composites from the perspective of 763 

thermodynamics and reaction pathways is needed.  764 

For applications, promising g-C3N4-based heterogeneous photocatalysts can remove 765 

pollutants from different water bodies, but only a handful of pilot-scale studies have been 766 

carried out, not implemented on a large scale [255,256]. Many issues are still to be resolved 767 

before they can be applied on a large scale in the future. The first consideration is whether the 768 

photocatalytic process should be used as a treatment unit in the sewage treatment plant or as 769 

an independent system to undertake the whole sewage treatment process alone. In terms of the 770 

photocatalytic process as an independent treatment system, the dynamics and photoutilization 771 

efficiency of g-C3N4-based composites in the whole photocatalytic process need to be enhanced. 772 

From the perspective of applications, the following areas need to be improved: (i) To ensure 773 

that photocatalysts can maintain high photocatalytic activity after long flow operation, the 774 

fixation strategy without negative influence in photocatalyst catalytic activity and/or cost-775 

effective solid-liquid separation technique is needed to be developed; (ii) For light use 776 

efficiency, in addition to the need to increase the light response range of the photocatalysts 777 

themselves, more efficient solar collectors are also needed to improve the light energy intensity 778 

per unit area; (iii) For degradation target, besides the degradation of non-biological pollutants 779 

in water, photocatalytic inactivation of pathogenic microorganisms in water by g-C3N4-based 780 

composites has a great application prospect. 781 

Furthermore, before the practical application of the g-C3N4-based heterogeneous 782 
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photocatalysts and photocatalytic equipment, pilot tests should be carried out to ensure that the 783 

photocatalytic water purification technology developed is comprehensively assessed. For 784 

example, the run of all the processes requires the actual device to provide a large amount of 785 

technical and economic data for LCA, such as the photocatalyst usage, photocatalytic treatment 786 

efficiency, floor space requirements, non-renewable energy consumption, secondary pollution 787 

emissions, and other costs. Meanwhile, LCA also needs to consider the impact of photocatalytic 788 

water purification technology on the environment, such as whether the g-C3N4-based 789 

photocatalysts are bio-toxic, and whether their mass preparation and use have potential 790 

ecological hazards. 791 

Finally, the commercialization of g-C3N4-based photocatalysts still has a long way to go. 792 

The collaboration of all disciplines worldwide, including materials science, physical science, 793 

and chemical science, is an important weapon to break the bottleneck in the field of materials  794 

chemistry and energy and will lead us to a sustainable world. 795 
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