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A B S T R A C T   

Lignocellulosic biomass (LB) pyrolysis and gasification technologies for bio-oil, syngas and process heat have 
been widely described, and biochar, as a significant byproduct of LB pyrolysis, has also received increasing 
attention because of it global sustainability. Biochar is attractive to researchers, mainly due to the value of its 
activity and reactivity, bringing the possibility of achieving carbon utilization and carbon neutralization. 
However, few studies have systematically described the changes in chemical composition and structure of LB 
during its carbonization process, as well as the origin of produced biochar’s reactivity. A better understanding of 
what chemical substances have facilitated biochar reactivity and how they function is needed, which is of great 
value for environmental remediation analysis and green application strategy formulation. Herein, the new in-
sights into the possible decomposition/transformation mechanisms of LB to functionalized biochar were dis-
cussed. Subsequently, the basic structure of lignocellulosic biomass derived biochar (LBC) was studied, and its 
reactivity-related compositions were also summarized. More importantly, discussion was expanded on the 
origin of LBC’s reactivity and the reactivity expression ways. And the outlook section will highlight insights into 
future directions and prospects, aiming to overcome current limitations by developing more methods and 
exploring other green applications.   

1. Introduction 

Excessive consumption of fossil fuels and its corresponding envi-
ronment consequences have become global problems. In order to deal 
with increasingly severe global environmental rick, food security and 
energy shortage problems, it inevitably needs to seek innovation, effi-
cient, sustainable and eco-feasible solutions [1–5]. Biomass is a typical 
sustainable bioresource, which refers to all kinds of organisms formed 
through photosynthesis using readily available carbon dioxide, water 
and sunlight in the atmosphere, including all animals, plants and mi-
croorganisms [6]. Compared with non-renewable fossil fuels, it is widely 
found in nature, possessing great prospects in producing energy, 
chemicals and other products [7–10]. The production of carbon-neutral 
materials (such as biochars [11] and carbon nanotubes [12]) and 
low-emission fuels [13–15] from this renewable resource is playing an 
increasingly important role in gradually replacing traditional fossil 
processes, and has received extensive attention from the academic field 
in the past decade [16]. 

Biochar (biomass-derived black carbon, BC) is defined as a kind of 
solid, highly aromatic and carbon-rich co-product produced by the 
heating process of biomass under oxygen-deficient or oxygen-free con-
ditions [17]. It has inestimable potentials in agricultural production, 
energy storage, and environment management due to characteristics of 
high porosity, cation exchange capacity, absorbability, stability, nutri-
ents and reactivity [18–20]. In energy storage, biochar can be designed 
as an electrode material for lithium ion batteries and supercapacitors, 
and as a catalyst for oxidation-reduction reaction and hydrogen storage 
process [19,21]. Also in environmental management, biochar can be 
used as an efficient amendment playing an important role in pollutants 
removing or stabilizing [22,23]. 

As a typical feedstock for biochar preparation, lignocellulosic 
biomass (LB) is the most abundant, cheapest and most widely sourced 
biomass on earth, which has been identified to be economically feasible 
and ecologically effective [7,24]. Compared with other biomass (e.g., 
animal residues, food processing wastes, sewage sludges and municipal 
solid wastes), LB has the advantages of lower water content, less ash 
content, and simpler composition [25,26]. Meanwhile, the biochar 
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based on lignocellulosic biomass pyrolysis is significantly better than 
other sources in terms of pretreatment costs, surface structure advan-
tages and application potentials. Table 1 summarizes the data on the 
current situation and application potentials of biochar production from 
different biomass in recent years. Hence, in industrial large-scale pro-
duction, LB and its corresponding biochar has a higher practical value of 
popularization and application. 

Biochar is attractive to researchers, mainly due to the value of its 
activity and reactivity, bringing the possibility of carbon utilization and 
carbon neutralization. In this study, we define the reactivity of biochar 
as the function of strengthening electron transfer and mediating chem-
ical reaction promoted by special components or structures contained in 
biochar, which is different from its adsorption activity and conditioning 
effect (biochar activity). Although there are some literatures that have 
studied the influence of conditions in biochar preparation process and 
the effects of modification on biochar properties, the breakthrough 
points of paying attention to the reactivity exploration of biochar are not 
much. For example, Kan and his co-workers discussed the effects of 
pyrolysis parameters on the properties of LB products, but the viewpoint 
about changes of biochar characteristics was not given in essence [50]. 
While Mäkelä et al. studied the hydrothermal carbonization character-
istics of LB, but did not pay more attention to the cause of rich active 
sites existing in biochar surface [26]. The studies on the reactivity of 
biochar derived from lignocellulosic biomass (LBC) are of great value 
because it can reveal how LBC is endowed with the ability of mediating 
electron transfer and promoting chemical reaction among substances, 
and can be used for reference to explore the reactivity of biochar con-
version from other biomass [51]. And the exploration of its origin 
mechanism is also an important basis for environmental remediation 
analysis and green application strategy formulation based on efficient 
and sustainable biochar-based materials. 

As a significant part of the biogeochemical carbon cycle, the efficient 
and sustainable utilization of biochar derived from LB is undoubtedly an 
essential means to deal with the global resource, energy and environ-
ment crisis. However, few studies have systematically described the 
changes in chemical composition and structure of LB during the biochar 
preparation process, as well as the origin of the reactivity of biochar. A 
better understanding of what chemical substances have facilitated bio-
char reactivity and how they origin is needed. Therefore, it is necessary 
to make an in-depth study on the conversion technology and reactivity 
of biochar derived from LB, which is of great value for achieving the 
goals about carbon cycle, carbon neutrality and global sustainable 
development. 

Herein, this paper aims to provide the new insights into the possible 
mechanisms about decomposition/transformation of LB to functional-
ized biochar and LBC reactivity generation process at molecular level. 
Firstly, the latest achievements in sustainable LBC conversion technol-
ogies (LBCTs) have been summarized and the carbonization (biochar 
conversion) process of the main components of LB are clarified. 

Moreover, the difference and relationship between the product BC and 
the original LB in structure and reactivity-related composition are also 
studied, especially in revealing the origin of BC reactivity when it is used 
as environmental functional materials. Finally, the reactivity expression 
and its practical value of LBC have been discussed, which provide a 
certain theoretical basis and scientific support for its future development 
in resources recovery and environmental remediations. 

2. Lignocellulosic biomass conversion for biochar 

Generally, lignocellulosic biomass can be converted into biochar via 
thermochemical treatment. It is mainly composed of carbohydrate 
polymers (i.e., cellulose and hemicellulose), aromatic polymers (i.e., 
lignin), extractives (resins, tannins, and fatty acids) and inorganic 
components (ICs) [52,53]. The fine structure of lignocellulosic biomass 
is showed detailly in Fig. 1. Cellulose is a kind of polysaccharide 
molecule, which generally consists of several hundreds to many thou-
sands of β(1–4)-linked glucoses [52]. Hemicellulose is a heterogeneous 
class of polymers made of different sugar monomers (six and five carbon 
monosaccharide units), linking the fibers of cellulose into microfibrils 
and cross-links with lignin, further providing structural strength for 
plant cells [54]. Finally, lignin (mainly composed of coniferyl alcohol, 
p-coumaryl alcohol, and sinapyl alcohol) is considered as the cellular 
glue, which provides impermeability, structural support, and standing 
up to oxidative and/or microbial attack [55,56]. 

2.1. LBC conversion technologies 

LBC can be produced via several sustainable carbonization technol-
ogies, which all basically meet the requirements of green chemistry in 
terms of wastes recycling and efficient utilization [57]. Among these 
carbonization technologies, slow pyrolysis, microwave carbonization, 
and hydrothermal carbonization, which mainly retain the solid phase 
composition, are applied to produce sustainable biochar. While fast 
pyrolysis, gasification and flash carbonization are commonly utilized for 
acquiring renewable energy source and process heat, aiming at 
concentrating biomass energy for bio-oil and bio-gas production, so 
biochar is generally as a co-product. Fig. S1 have given the brief de-
scriptions of all the LBCTs involved in this section. And the yields of LBC 
obtained from different LBCTs and operating conditions as well as cor-
responding technological challenges are shown in Table 2. This section 
has provided insights into the state-of-art accomplishments in LB con-
version and LBCTs. 

Pyrolysis. Pyrolysis is the most studied and discussed carbonization 
technology, and it generally refers to the process that LB raw materials 
under nitrogen atmosphere and other hypoxia conditions experience a 
series of thermochemical and physical changes, such as water reduction, 
removal of volatile substances, generation of aromatic substances and 
material structure changes [68]. Different morphologic products can be 

List of abbreviations: 

LB Lignocellulosic biomass 
LBC Biochar derived from lignocellulosic biomass 
LBCTs LBC conversion technologies 
OCs Organic components 
ICs Inorganic components 
MCs Mineral compounds 
FC Fixed carbon 
VMs Volatile matters 
HTC Hydrothermal carbonization 
BDE Bond dissociation energies 
DFT Density functional theory 

PPE Phenylethyl phenyl ether 
SSA Specific surface area 
ARS Aromatic ring structure 
CSS Carbon skeleton structure 
AFGs Active functional groups 
PFRs Persistent free radicals 
HMs Heavy metals 
NFGs Nitrogen-containing functional groups 
SFGs Sulfur-containing functional groups 
OFGs Oxygen-containing functional groups 
TMs Transition metals 
AOPs Advanced oxidation processes 
ROS Reactive oxygen species  

F. Qin et al.                                                                                                                                                                                                                                      



Renewable and Sustainable Energy Reviews 157 (2022) 112056

3

Table 1 
Present situation and application potentials of biochar produced by different biomass sources.  

Type Biomass 
feedstock 

FT (1) Modification method SSA (2) PV (3) APD 
(4) 

Application potential Reference 

Lignocellulosic 
biomass-based 

Ramie 450 Aging of biochar based on 
acidizing and oxidation 
process 

42.10 – 4.540 Achieving effective adsorption and removal 
of cadmium in water 

[27] 

Corn straw 500 – 23.50 0.0110 6.000 Realizing the significant reduction of H2S 
production in biogas digester without 
affecting the methane production 

[28] 

800 Zinc chloride solution 
modification 

544.00 0.6100 – Having high electrocatalytic performance, 
and realizing the effective removal of 
nitrobenzene in water based on adsorption 
and electrochemical decomposition 

[29] 

900 – 693.09 0.2925 2.294 Effectively activating persulfate and 
hydrogen peroxide to remove phenolic 
pollutants in water, and realizing its high 
mineralization 

[30] 

Maple 500 – 161.00 0.0950 3.500 Realizing the significant reduction of H2S 
production in biogas digester without 
affecting the methane production 

[28] 

Peanut shell 600 Modification with MgO – – – Adsorbing phosphate from saline-alkali soil, 
improving soil nutrients and increasing rice 
yield 

[31] 

700 – 283.00 0.1700 5.260 Having the application potential to catalyze 
the degradation of antibiotic pollutants in 
water 

[32] 

Pine sawdust 650 – 171.00 0.0750 – Significantly increasing the number of main 
active microorganisms in the process of 
anaerobic digestion, and improving the 
production of CH4 

[33] 

Walnut shell 500 – 1.64 0.0025 6.165 Reducing the migration rate of cadmium in 
soil, and having the potential for 
remediation of heavy metal pollution in soil 

[34] 

Rice straw 600 Hydrogen peroxide 
pretreatment 

138.10 – – Inhibiting N2O emission during soil 
denitrification process, and alleviating 
greenhouse effect 

[35] 

Pomelo peel 300 Potassium ferrate 
impregnation pretreatment 

35.88 0.0244 3.920 Realizing the efficient removal of 
hexavalent chromium in water through 
compound adsorption mechanisms such as 
reduction, electrostatic action and 
complexation 

[36] 

Pomelo peel 900 Hydrothermal 
carbonization 
pretreatment at 190 ◦C for 
24 h followed by pyrolysis 

1292.00 0.7040 2.179 Possessing remarkable efficiency in 
removing analgesic and antipyretic drug 
from water 

[37] 

Douglas fir wood 900–1000 – 510.00 0.2100 15.000 As a useful agricultural soil improver, 
having little effect on the viability of soil 
bacteria 

[38] 

Lodgepole pine 550 – 111.89 – – Having the potential to reduce greenhouse 
gas emissions 

[39] 

Litchi peel 850 Hydrothermal 
carbonization 
pretreatment at 180 ◦C for 
12 h followed by pyrolysis 

1006.00 0.5880 – An effective and recoverable adsorbent for 
removing dye pollution from aqueous 
solution 

[40] 

Sawdust of 
poplar 

700 – 572.63 0.2834 1.980 Activating persulfate effectively in a wide 
range of pH, and continuously repairing the 
pollution of lipid regulators as well as their 
metabolites in water. 

[41] 
600 – 400.67 0.1825 1.822 

Pine needle 800 – 146.03 0.0800 2.320 An efficient catalyst for removal of 
emerging organic pollutants from surface 
water/groundwater 

[42] 

Other biomass- 
based 

Pig manure 700 – 32.60 0.0350 4.260 Possessing the ability of adsorption and 
catalytic hydrolysis of typical pesticides 

[43] 
700 Deashing treatment of 

biochar based on 
acidification 

218.10 0.3150 5.780 

Sheep manure 500 Deashing treatment of 
biochar based on 
acidification 

160.53 0.1720 10.030 Having the potential of adsorption and 
removal of phenothiazine dyes and can be 
reused many times 

[44] 

Rabbit faeces 500 Deashing treatment of 
biochar based on 
acidification 

21.14 0.0410 8.640 

Poultry litter 400 – 6.71 0.0350 0.480 Potential agricultural and environmental 
application adsorbents for the removal of 
endocrine disruptors in the environment 

[45] 

Shrimp shell 800 – 59.00 0.2000 6.700 [46] 
800 594.00 0.9300 3.100 

(continued on next page) 
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Table 1 (continued ) 

Type Biomass 
feedstock 

FT (1) Modification method SSA (2) PV (3) APD 
(4) 

Application potential Reference 

Having great application potential in the 
treatment of high salt wastewater and 
organic wastewater 

Deashing treatment of 
biochar based on 
acidification 

800 i) Acidification 
pretreatment of feedstock 
ii) deashing treatment of 
biochar produced by 
pyrolysis 

610.00 0.3300 0.900 

Dewatered 
sewage sludge 

400 – 75.34 – 7.779 An effective strategy of waste controlling 
with waste, having potential in the 
treatment of refractory organic pollutants 

[47] 

400 – 70.14 0.2240 7.109 Having the potential in simultaneous 
treatment of landfill leachate and dye 
pollution 

[48] 
400 Modification with 

nanometer zero-valent iron 
59.68 0.2010 6.325 

Anaerobically 
digested sludge 

600 – 162.70 0.0400 – Achieving the effective remediation of 
heavy metal pollution in wastewater system 

[49] 

(1) FT: formation temperature (◦C); (2) SSA: BET-N2 surface area (m2⋅g− 1); (3) PV: pore volume (cm3⋅g− 1); (4) APD: average pore diameter (nm). 

Fig. 1. The main components of LB are cellulose, hemicellulose, and lignin. Microfibrils are made of cellulose, hemicellulose and lignin and organized into mac-
rofibrils for mediation of the structural stability of plant cell wall [52]. Adapted and reprinted from ref. 52. Copyright 2008 the Springer Nature. 

Table 2 
Solid LBC yields and technological challenges of different sustainable LBCTs.  

LBCTs Typical 
temperature (◦C) 

Typical 
residence 
time 

Typical solid 
LBC yield (in 
mass %) 

Typical carbon 
content of LBC (in 
mass %) 

Typical costs Technological challenges References 

Slow pyrolysis ~700 ◦C ~Minutes- 
days 

15-89% ≈95% 51-373 US 
$/tonne biochar 

Needing high reaction temperature and 
controlled heat rates; corrosion of reactor 
containment 

[58–61] 

Fast pyrolysis ~300–1000 ◦C ~2 s 12–27% ≈74% 560 US$/tonne 
biochar 

Rapid removal of solid residues and 
effective liquids recovery 

[60,62] 

Microwave 
carbonization 

~200–600 ◦C ~30 min 25–35% >60% 650 US$/tonne 
biochar 

The hot spot phenomenon; the need for 
microwave absorbers 

[63,64] 

HTC ~180–300 ◦C ~5 min-12 h 36–72% <70% 33-87 US 
$/tonne biochar 

Pressure in continuous systems; safety [19,60, 
65] 

Flash 
carbonization 

~300–600 ◦C ~30 min 37–50% ≈85% No information 
available 

Elasticity limit of the materials used for 
the production equipment 

[60,66] 

Gasification ~700–900 ◦C ~10–20 s 5-10% No information 
available 

380 US$/tonne 
biochar 

Corrosion caused by tars; blockage of 
particulate filters and clogging of fuel 
lines/injectors in internal combustion 
engine 

[60,67]  
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obtained, among which the solid substance is LBC. LBC generation 
process can be analyzed from two aspects of micro molecules and macro 
products, and the specific contents are discussed in the follow-up (Sec-
tion 2.2). Based on the heating environment, heating medium (heat 
transfer and energy conversion) and heating speed (the rate of temper-
ature rise during manufacturing) [69], pyrolysis can be divided into 
different types including fast pyrolysis and slow pyrolysis etc., which 
have been applied in different environments and requirements. 

The reaction time and heating methods are the key process param-
eters. And peak temperature, pressure, particle sizes, vapor residence 
time, moisture content, inorganic elements, and percent composition of 
LB components also play important roles in the pyrolysis process [6,70]. 
Torrefaction (a mild form of pyrolysis at temperatures typically between 
200 and 320 ◦C) [71] or slow pyrolysis has been applied for the pro-
duction of charcoal through the ages [6]. While fast pyrolysis with high 
temperature increasing rate and short residence time particularly favors 
the generation of bio-oil, but inhibits the formation of biochar [7,72]. 
Recently, many studies focused on increasing the LBC yields for envi-
ronmental management via adjusting the conditions of preparation [70, 
73]. Generally, the yield of LBC decreases as the temperature increases 
until the peak temperature is higher than 700 ◦C [74]. But increasing the 
peak temperature, especially above 360 ◦C, can also result in an 
increasing content of stable char-like materials further enhancing the 
stability of LBC in soil [75]. 

Additionally, the residence time at peak temperature may have little 
influence on LBC yields because pyrolysis kinetics is mainly governed by 
the peak temperature [76]. While increasing the pressure of pyrolysis 
(1.0–3.0 MPa) seems to increase both the fixed carbon (FC) content and 
the LBC yield (significantly increase the yield of the secondary charcoal 
and reduce the required energy to sustain this process) [77,78]. Pub-
lished works also revealed that the yield of LBC was enhanced with the 
increasing particle size of LB feedstock [79]. This is probably because 
the diffusion rate of the volatiles through the LBC decreases during 
pyrolysis, thus the production of additional LBC has been acquired 
through secondary reactions. Compared to fast pyrolysis, it is not 
essential to require a fine feedstock particle size (smaller than 1 mm) for 
slow pyrolysis [6]. Moreover, higher moisture contents (42–62%) of the 
LB feedstock can increase the LBC yield at elevated pressures [70], while 
the ICs will also affect the carbonization reaction and the obtained LBC’s 
substance composition, thermodynamic property and reactivity [61]. 

Microwave carbonization. Microwave production of LBC is a novel LB 
carbonization technology and it is similar to pyrolysis. The biggest dif-
ference between it and traditional pyrolysis is heating mechanism. Mi-
crowave is an electromagnetic wave composed of two vertical 
components, usually known as non-ionizing radiation, which can 
convert electromagnetic energy into heat energy of microwave heating. 
Microwave carbonization is usually regarded as a kind of energy con-
version process, rather than the traditional heat transfer through me-
dium [80]. The advantage of microwave heating is that there is no 
requirement for drying and other steps in feedstock pretreatment, 
because water, as a polar molecule, will play a positive role in the py-
rolysis process and be removed eventually. Controllability and energy 
saving are also advantages, because microwave carbonization technol-
ogy generates heat faster with less environmental dissipation [81]. On 
the other hand, the main problems are the requirements of microwave 
carbonization technology for microwave absorbers in raw materials and 
the existence of the hot spot phenomenon [82]. At present, the micro-
wave technologies can be divided into catalytic assisted microwave 
pyrolysis and non-catalytic microwave pyrolysis. And commonly used 
catalysts include soluble inorganics, metal-oxides, microporous mate-
rials and carbonaceous materials [63,83]. On the economic and tech-
nical side, the cost per unit of LBC produced by microwave pyrolysis is 
generally higher than that of conventional pyrolysis. A work by Hael-
dermans indicates that the lowest selling price of microwave pyrolysis 
LBC is between €564 and €979 per tonne [84], which can be concluded 
as a typical cost of about $650 per tonne. But with the decreasing cost of 

raw biomass and the improvement of microwave equipment, the cost of 
this type LBC is expected to be reduced. 

Hydrothermal carbonization. Hydrothermal carbonization (HTC), also 
referred to as wet pyrolysis, is a carbonization process of converting LB 
feedstocks into LBC at 180–300 ◦C in water for 5 min to 12 h with typical 
yield of 36–72% (Table 2). Friedrich Bergius first proposed the HTC 
process in 1913 to describe the process of natural coalification [85]. 
Most investigations about HTC were related to the production of 
chemical products as well as the recovery of liquid and gaseous fuels 
[86,87]. However, recent researches on HTC focused on its solid prod-
ucts (LBC), which have value-added applications in environmental 
management [18,88]. Furthermore, utilization of HTC technology for 
biochar from LB feedstocks is becoming increasingly popular for its 
inherent advantage of using high moisture feedstocks to generate the 
LBC rich in active functional groups [26,65]. The HTC process occurs in 
water under self-generated pressures thereby eliminating the cost of 
drying process, and typically spherical micro-sized LBC with controlled 
porosity and oxygen-containing groups are generally obtained [89,90]. 
Its carbonization process are “carbon negative”, implying that it is able 
to reduce emissions from biomass and meet the requirements of carbon 
sequestration and carbon neutralization [91]. The LBC produced by HTC 
also can be in turn used in post-functionalization purposes and envi-
ronmental management due to high reactivity [19]. Notably, tempera-
ture is the governing process parameter for the physicochemical 
properties of LBC produced from HTC. Higher temperature and longer 
vapor residence time could increase the LBC’s carbon content, the extent 
of energy densification, the amounts of gaseous products, but decrease 
its yield [65,92]. Moreover, LBC produced via HTC has a relatively 
lower ash content, higher carbon recovery, and more oxygen-containing 
functional groups which make it more acidic than that produced via 
pyrolysis but more readily biodegradable, while LBC from slow pyrolysis 
is steadier [93,94]. 

Gasification. Gasification is commonly referred as a thermochemical 
decomposition of LB with a major objective to produce H2, CO, CO2 and 
CH4. Technically, in an ideal gasifier, there is no production of LBC 
because vast majority of LB will be converted into gaseous products and 
ash. But during the actual operation, a small yield of LBC (5–10%) can be 
achieved for the partial oxidizing atmosphere and the high operating 
temperature [70,95]. Therefore, gasification technology is generally 
used to obtain substances of energy sources and LBC at the same time 
[96,97]. The specific fractions of the obtained products are depend on 
the gasification conditions (e.g., activation temperature, residence time 
and pressure) and the environment (steam or inert gases) prevailing in 
the process of gasification [70,98]. Moreover, ICs (e.g., Al, Si, Ca, Mg, Fe, 
P, K, S, Na, Ti and Cl) in LB feedstocks can also be converted to gaseous 
products [99]. It is a remarkable fact that the LBC produced via gasifi-
cation may contain higher quantity of alkali and/or alkaline earth 
metals [100], polycyclic aromatic hydrocarbons (PAHs) [101,102], and 
dioxins and furans (PCDD/Fs) [103], which are extremely toxic sub-
stances generated in high-temperature processes. As a consequence, LBC 
produced from gasification process may be potentially problematic as 
soil amendments or water remediation agent [104]. But this kind of 
LBCTs still possesses several economic and technical merits, such as 
higher energy density and carbon conversion efficiency of products in 
per unit LB [96,105]. Additionally, gasification permits continuous LB 
feedstock feeding and the process heat can be used in LBC-related 
downstream and/or feedstock-related upstream processes [105]. 

Flash carbonization. The flash carbonization technology is invented 
by the University of Hawaii [66,106]. And professor Michael J. Antal 
and co-workers have taken utilization of flash carbonization to the 
conversion of LB [72]. Specifically speaking, LB is placed in a vessel with 
an initial pressure in the range of 1–2 MPa and the flash fire is period-
ically lighted at the bottom of the LB feedstock where the carbonization 
time decreases with the increasing pressure. Under this condition, the 
volatile matters (VMs) in LB are converted into gaseous fuel, and the 
remaining fixed carbon is derived into LBC [72]. The total flash 
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carbonization process is less than half an hour, and the temperature is 
conditioned by heating time, water content of the LB feedstock, and the 
delivered air [66]. Compared with traditional pyrolysis and HTC, the 
preparation time of LBC is shorter (short-time process with high tem-
perature and pressure), the resulting LBC contains higher microporous 
components, and its yield is about 40% [107]. 

Techno-economic analysis. In the cost estimation of LBC production, 
specific factors such as heating temperature, residence time and yield 
are the specific factors that affect the cost of LBCTs. Different production 
process parameters, various biomass size and market conditions all will 
lead to different production costs of LBC. In Shabangu’s paper, the base 
break-even selling prices of slow-pyrolysis LBC at 300 ◦C and 450 ◦C are 
$220 and $280/tonne, respectively [108]. In another work, the cost of 
conventional pyrolytic LBC is between €436 and €886 through technical 
and economic costing [84]. In general, the feedstock price, the equip-
ment construction cost (different methods have different requirements 
for production environment, equipment and material properties), run 
manufacturing expenses (such as heating energy consumption, factory 
scale and production yield) and operating human cost (worker man-
agement, transportation and storage, etc.) are main factors that should 
be taken into account in LBCTs [69]. In Table 2, comprehensive con-
siderations are given to the reported values of literatures and typical 
costs were provided, hoping to provide reference for the cost accounting 
of LBC. In addition, the evaluation of cost and price of LBC by full life 
cycle assessment is also worthy of attention [109], and its potential 
application in carbon neutralization effectively improves the efficiency 
of LBC production and LBCTs application. 

2.2. Conversion pathways and mechanisms 

LBCTs have been discussed, as shown above. Notably, LBC 

conversion is an extremely complex thermochemical process, including 
molecular bond breaking and binding, molecular structure isomeriza-
tion and repolymerization of small molecules generated after cracking, 
etc. This reaction process is generally accompanied by a series of 
chemical and physical changes, in which chemical changes are mainly 
the diversified chemical reactions and substance changes generated in 
the pyrolysis process, while physical changes mainly include the trans-
formation of physical state and energy. Elucidation of LB conversion and 
LBC formation mechanisms in these processes will be helpful to guide 
the development of more efficient biochar preparation techniques and 
achieve the directional preparation of highly active biochar. Therefore, 
in this section, the transformation mechanism of main components in LB 
(cellulose, hemicellulose, and lignin) is discussed. And each component 
is transformed at different degrees and via different pathways and 
mechanisms. 

2.2.1. Cellulose conversion 
Compared with hemicellulose and lignin, the structure of cellulose is 

the most ordered and simplest in LB. The last few years, growing re-
searchers has endeavored to explore the cellulose conversion [110,111]. 
The process of cellulose conversion is greatly affected by temperature, 
including primary and secondary conversion [112]. Based on the cel-
lulose pyrolysis reaction model proposed by Kilzer, it is generally 
believed that there are two competitive reaction paths for the primary 
pyrolysis transformation of cellulose [113]: i) cellulose is dehydrated to 
produce cellulose derivatives, CO, CO2 and H2O; ii) the other is the 
depolymerization of cellulose into levoglucosan and tar etc. Among 
them, the dehydration reaction of cellulose will form active cellulose or 
dehydrated cellulose. Subsequently, cellulose derivatives will be further 
transformed under excessive reaction temperature or longer residence 
time, resulting in secondary reactions such as aromatization and 

Fig. 2. LBC and potential chemicals from the conversion of cellulose [116,118]. Adapted and reprinted from ref. 116. Copyright 2011 the Royal Society of Chemistry; 
Adapted and reprinted from ref. 118. Copyright 2011 the Royal Society of Chemistry. 
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repolymerization of small molecules, further producing LBC [16,113]. 
Potential chemicals, including LBC, from the conversion of cellulose are 
presented in Fig. 2. A total of 27 components are identified via GC-MS 
analysis of cellulose and its surrogate pyrolysis [114,115]. The main 
products are furfural, levoglucosan, hydroxymethylfurfural, acetic acid, 
formic acid and aldehyde compounds [7]. 

Titirici et al. [116] investigated the HTC of microcrystalline cellulose 
as well as rye straw, and studied differences between cellulose/rye straw 
derived LBC and biochar derived from D-glucose in morphology and 
chemical structures. The final LBC structure is switched from a carbo-
naceous poly-furan rich in oxygen-containing groups to an aromatic 
carbon network with extended aromatic domains (Fig. 2). Moreover, 
this LBC also exhibits a well-developed carbon skeleton structure which 
is formed during the early stage of HTC process. In the process of gasi-
fication, LBC is formed via crosslinking reactions, and retains the 
morphology of the original LB [105]. As temperature increases, LBC 
becomes progressively higher in carbon and more aromatic due to the 
removal of carbonyl, hydroxyl, C–H bonds and C––C groups. And vola-
tile matters will be released at the higher gasification temperatures from 
open spaces in LBC porous structure. Moreover, higher temperatures 
may cause softening, melting, and mixing of structure. And the 
shrinkage of the carbon networks could occur at temperatures in excess 
of 500 ◦C, accompanied by aromatization reaction [99,117]. 

2.2.2. Hemicellulose conversion 
Hemicellulose is commonly with the chemical formula (C5H8O4)m 

and polymerization degree of 50–200. It is an amorphous polymer, 
usually composed of five different sugar units: D-xylose, L-arabinose, D- 
galactose, D-glucose and D-mannose. Due to its strongest activity, the 
conversion reaction can take place quickly at the lower temperature 
[119]. The transformation mechanism of hemicellulose is extremely 
similar to cellulose, but because of the five-carbon sugar structure, its 
main products are often the furan derivatives [7]. Potential chemicals, 
especially LBC, from the conversion of hemicellulose are shown in Fig. 3. 
Shanks and colleagues [120] investigated the products from fast pyrol-
ysis of hemicellulose extracted from switch grass. Sixteen products have 
been identified and quantified (accounting for 85% of the mass balance), 
and the impacts of inorganic salts (KCl, NaCl, MgCl2 and CaCl2) and 
switch grass derived ash on the distribution of products were also 
investigated. Results showed that the ash and inorganic salts increased 
the formation of LBC and the emission of CO2. Notably, the conversion 

process of hemicellulose is considerably different from cellulose, which 
can be attributed to the cleavage of glycosidic bonds. 

In contrast of the cellulose pyrolysis, the temperature corresponding 
to the hemicellulose decomposition is significantly lower than its 
branched and amorphous structure [121]. Devolatilization has essen-
tially ceased at temperatures beyond 500 ◦C, and the further slight mass 
loss is mainly caused by the releasing of small molecular products in the 
process of condensation to form LBC. Moreover, the O-acetyl groups in 
hemicellulose can be cleaved into small molecular radicals, or dissoci-
ated, which can stabilize the large molecular radicals and further inhibit 
the condensation for LBC. And the carbonization mechanism reveals 
that furfural is an important intermediate in the production of hemi-
cellulose based biochar [122,123]. Notably, due to the higher mineral 
content of hemicellulose biomass which could promote the autocatalytic 
carbonization process, the yield of biochar derived from hemicellulose 
biomass is higher than that from cellulose biomass [124]. And after the 
demineralization of hemicellulose biomass, the biochar produced by its 
pyrolysis is also significantly lower than that produced by xylan (a type 
of hemicellulose). 

In the process of hemicellulose conversion for LBC, dehydration and 
breaking of less stable linkages occur at 150–240 ◦C for xylan and 
150–270 ◦C for glucomannan; depolymerization occurs at 240–320 ◦C 
for xylan and 270–350 ◦C for glucomannan; charring happens at 
320–800 ◦C for xylan and 350–800 ◦C for glucomannan [125]. During 
dehydration and breaking of less stable linkages, methanol is formed via 
the fragmentation of the methoxy groups in 4-O-methyl-α-D-glucuronic 
acid, while formic acid is produced for the rupture of the carboxyl in the 
hexuronic acids. Furfural formed at low temperature reveals that 
depolymerization reactions are also possible in the process of dehydra-
tion and fragmentation, which provides the basis for the production of 
LBC [126]. When temperature increases, the glycosidic linkages become 
highly unstable causing a rapid depolymerization and different 
anhydro-sugars are formed. Moreover, the pyran rings will be trans-
formed into furan rings which are more stable, explaining the formation 
of furfural, 5-hydroxymethylfurfural, and 5-methylfurfural by depoly-
merization of glucomannan [127]. While temperature increases further, 
the residues become much more aromatic and LBC is produced. 

2.2.3. Lignin conversion 
Lignin has the highest complexity and the strongest thermal stability 

among the three components of LB, and is the major focus of LBC 

Fig. 3. LBC and potential chemicals from the conversion of hemicellulose [120]. Adapted and reprinted from ref. 120. Copyright 2011 the Royal Society 
of Chemistry. 
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conversion research. Lignin is mainly formed via non-phenolic phenyl-
propanoid units linked with C–C and ether bonds, and its proportions of 
the monomer units are variable depending on the LB types [56,128]. Its 
LBC conversion process is also roughly divided into primary trans-
formation and secondary transformation, which is affected by many 
factors such as reaction temperature, lignin source and pretreatment 
method [125,129]. The primary conversion process of lignin generally 
takes place in the low temperature (mainly 200–400 ◦C), and the 
guaiacol and eugenol are generated. Through NMR analysis of the 
products, it is found that Cα-O and Cβ-O bonds will be broken during this 
conversion, while the C–C and CH3–O bonds demonstrate excellent 
stability [130]. With the further increase of temperature, the methoxyl 
structure begins to become active, and lignin will undergo secondary 
transformation mainly through the homolysis of the O–CH3 bond, 
intramolecular rearrangement and alkylation reaction, generating 
phenolic products such as catechol, triphenols and cresol, and finally 
producing LBC after molecular repolymerization and aromatization 
[55]. 

Early researches on lignin transformation mainly focused on the 
monomer model compounds of lignin, among which guaiacol and 
eugenol are the simplest and typical ones. The pyrolysis product of 
eugenol is mainly coke, while the guaiacol with one more methoxy 
group is twice as likely to form biochar as eugenol and is the main source 
of LBC [131]. And with the increase of substituents on the phenol ring, 
the activity of the intermediates will strengthened significantly, which is 
helpful to the occurrence of LBC formation [132]. For further studying 
the conversion mechanism of lignin monomer model, combined with 
density functional theory (DFT), Huang [133] and Liu [134] calculated 
various cleavage ways and corresponding bond dissociation energies 
(BDE) of typical monomer model of lignin as well as the reaction energy 
barriers of various possible processes (demethylation, demethoxy, free 
radical rearrangement, etc.). And the main processes and calculation 
results are shown in Fig. 4, Tables 3 and 4. It was found that processes 
(1) and (2) were the most important path, while path (3) was the 
competitive reaction path, and the activity of these paths were arranged 
in the order of (2)>(1)>(6)>(5)>(4) based on the results of energy 
barriers. Among them, paths (3) and (4) were also the dominated for-
mation mechanisms of LBC precursors (O-methylene benzoquinone) 
during lignin pyrolysis. Moreover, Huang et al. also detailly studied the 
potential energy profiles of three main paths (Pathways (1), (2) and (3) 
in Fig. S2 correspond to the paths of (1), (4) and (2) in Fig. 4b, respec-
tively), and analyzed the specific transformation processes of monomer 
model compound, which further supported the conclusion of Fig. 4. 
Similar results of DFT analysis also appeared in the researches of Liu 
[135] and Wang [136]. The primary pyrolysis mainly occurs in the 
homolysis or demethoxy process of O–CH3, while the production of 
small molecular gas products from the secondary pyrolysis is related to 
the functional groups in side chain, such as aldehyde group, hydroxyl 

group and methoxy group. Thus, the pyrolysis mechanisms of monomers 
in biochar conversion from lignin are mainly O–CH3 bond homolysis, 
demethoxy, side face removal and free radical rearrangement reaction. 

With the further understanding of lignin conversion, researchers 
found that the studies of monomer models cannot reflect the charac-
teristics and effects of lignin polymer. Therefore, the focus of conversion 
researches from lignin to LBC began to shift from monomer model to 
dimer model. Through several pyrolysis experiments, more than 8 types 
of bond have been determined and the β-O-4 bond is the major type of 
linkage in lignin structure, occupying 46–60% of the total linkages 
[137]. Phenylethyl phenyl ether (PPE) and its derivatives are the main 
model compounds, among which PPE is the simplest β-O-4 lignin dimer. 

Notably, there is a debate about the pyrolysis mechanisms of β-O-4 
bond. In the early days, researchers thought it was dominated by free 
radical mechanisms. Chu and co-workers [138] studied the trans-
formation of lignin at 250 ◦C and 550 ◦C using ethylene oxide-O-4 lignin 
as the model compound. They identified about 25 volatile compounds 
via pyroprobe-GC-MS, and proved LBC was probably formed via random 
repolymerization of radicals. The proposed pyrolysis mechanisms of 
lignin model compound are shown in Fig. 5. The β-O-4 bond breaks 
(cleavage 1 in Fig. 5) at temperatures between 250 ◦C and 350 ◦C. And 
the generation of radicals after Cβ-O homolysis cleavage is considered to 
be the starting procedure for the reaction of free radical chain. These 
radicals can extract protons from weak O–H or C–H bonding (e.g., 
C6H5–OH) to forming products [138,139]. Moreover, H-abstraction, 
rearrangement, isomerization, double bond formation and concerted 
reaction will diversify the distribution of products (See reaction (c) and 
(d) in Fig. 5) [138,140]. LBC is formed via the polymerization of small 
radical species (such as alkanes, alkenes and aromatics), and this reac-
tion will propagate with more radicals which leads to further polymer-
ization (See reaction (e) and (f) in Fig. 5). And the polyaromatic LBC is 
eventually generated after the elimination of hydroxyl, methoxyl, and 
other functional groups [138,141]. 

With the deepening of cognition, many scholars began to agree that 
free radical mechanism and synergistic cleavage reaction coexist in the 
conversion process from lignin to LBC. Huang et al. [142] calculated and 

Fig. 4. Various possible transformation processes of typical monomer model of lignin proposed by Huang et al. [133] and Liu et al. [134]. (a) Chemical structural 
formula of guaiacol and its nine homolytic cleavage ways. (b) Specific transformation pathways of guaiacol. Adapted and reprinted from ref. 133. Copyright 2013 AIP 
Publishing LLC. Adapted and reprinted from ref. 134. Copyright 2014 Elsevier B.V. 

Table 3 
BDE of the major bonds in guaiacol (unit: J⋅mol− 1) [133,134].  

Type Bond BDE/J⋅mol− 1 

D1 O(8)–C(9) 197.1 
D2 O(7)–H(14) 337.5 
D3 C(2)–O(8) 385.6 
D4 C(9)–H(15) 392.3 
D5 C(1)–O(7) 448.4 
D6 C(3)–H(10) 454.7 
D7 C(4)–H(11) 459.2 
D8 C(5)–H(12) 459.2 
D9 C(6)–H(13) 465.1  
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studied the pyrolysis mechanism of PPE via DFT, comparing the BDE and 
the activation energy of chemical bond cleavage in the initial pyrolysis 
process, and pointed out that the two processes exist at the same time. 
Subsequently, Huang [143] also simulated the carbonization process of 
β-O-4 lignin dimer model compound (1-phenyl-phenoxyl-1, 3-propane-
diol) by DFT, and calculated the effect of temperature on the conver-
sion process. Fig. 6, Tables 5 and 6 showed the calculation results of the 
cleavage ways (mainly Cβ-O, Cα-Cβ) and the main reaction pathways 
(homogeneous cracking and synergistic reaction processes) based on the 
β-O-4 type lignin dimer model compound. It was proved that the syn-
ergistic mechanism at low temperature is better than the mechanism of 
free radical homogenization, while free radical homogenization is 
dominant at high temperature, which is consistent with the research 
results of Elder and Beste [144]. They also proposed that the energy 
barrier of synergistic reaction is slightly lower than that of homogeneous 
cracking, and the synergistic reaction is mainly carried out according to 
the mechanism of reverse olefin decomposition. To sum up, the existing 
studies showed that the transformation mechanism from β-O-4 lignin 
dimer model to LBC is mainly Maccoll elimination reaction, reverse 
olefin decomposition reaction, Cβ-O homolysis reaction and Cα-Cβ 
cleavage reaction. However, due to the limitation of computing re-
sources and time as well as the complexity of the system, researchers 
have done little researches on the trimer model compounds of lignin. 

Meanwhile, the deep transformation mechanism between dimer model 
and trimer model is still incomplete and needs to be further studied. 

Notably, when LBCTs are applied to practical LB, the LBC conversion 
process will become quite complex. And lignin will be slightly altered by 
low-moderate temperature pyrolysis. Thus, the conversion of practical 
LB into carbonaceous materials with the same morphology and prop-
erties as that from D-glucose model still requires deep-going research 
[145,146]. In order to maximize energy densification and LB utilization, 
a new method containing different temperature regimes is necessary. 
Moreover, novel and efficient catalysts should be developed to facilitate 
the effective reaction pathway through hydrolysis-dehydration and 
elude the strong resistance against hydrolysis, especially taking 
up-scaling application of LBC production into consideration [147]. 

2.2.4. LBC formation 
As described above, the up-to-date knowledge about the conversion 

from LB to LBC including carbonization technologies, cellulose conver-
sion, hemicellulose conversion and lignin conversion has been reviewed. 
Previous studies [118,148] generally accepted LBC as an undesired 
by-product in the process of LB pyrolysis for bio-oils, syngas and process 
heat. However, the by-product is trendy to become black gold for its 
extensive new applications [19,149]. This section reviewed the LBC 
formation mechanisms comprehensively. 

Table 4 
Energy barriers of part reaction steps in guaiacol pyrolysis (unit: kcal/mol) [133,134].   

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 

Energy barrier 47.78 3.70 10.28 94.60 19.13 0.13 31.44 31.98 92.43 82.53 37.37  

Fig. 5. The proposed pyrolysis mechanism of lignin model compound [138]. Adapted and reprinted from ref. 138. Copyright 2013 John Wiley and Sons.  
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The typical formation mechanisms of LBC (including polymerization 
of condensed phase species, gas-phase repolymerization, dehydration of 
biopolymers and repolymerization) have been proposed. The dehydra-
tion of biopolymers (without depolymerization) is the main mechanism 
at relatively lower temperature in the process of slow pyrolysis, while in 
fast pyrolysis, LBC is usually difficult to maintain the original structures, 

indicating that repolymerization is the dominant mechanism for LBC 
formation [114,150]. It is noteworthy that the process of LBC formation 
can be described as an autocatalytic process because the inorganic 
components, especially the alkali metals and alkaline earth metals (such 
as K, Ca, Mg), are able to catalyze the LB pyrolysis [151]. In this part, the 
formation of LBC (including coke and char) from slow and fast, thermal 
and catalytic pyrolysis of LB feedstock and corresponding model com-
pounds are comprehensively concluded. Generally, char is the residue 
generated by thermal deconstruction, while coke is defined as the cat-
alytic product. In this review, the solid residues formed in LB pyrolysis, 
slow or fast, thermal or catalytic is named as LBC. The formation of LBC 
is mainly caused by dehydration, polymerization, decarboxylation, and 
decarbonylation of furanic compounds, anhydrosugars, fragmented ox-
ygenates and/or olefins. Fig. 7 illustrates the representative mechanisms 
involved in LBC formation. 

The pathway of toluene self-alkylation (RA in Fig. 7) is via alkylation 
(RA.1), dehydrogenative coupling (RA.2), isomerization (RA.3), 
hydrogen transfer and repetition (RA.4). The coke formation pathway is 
via alkylation on the methylbenzene with carbenium ions (RB.1), side 
alkylation and isomerization (RB.2), cyclization (RB.3), as well as 
repetition of RB.2, RB.3 and RB.4. The formation of char from furfural is 
via Diels-Alder cycloaddition (D-A cycloaddition) with propylene and 
isomerization (RC.1) as well as aldol condensations (RC.2~RC.7). The 
pathway RD includes D-A self- or hetero-cycloaddition (RD.1) of C-6 and 
C-5 anhydro-sugars, D-A cycloaddition of RD.1 products with the orig-
inal anhydro-sugars (RD.2), and repetition of RD.2, followed by the 
enol-keto tautomerization to generate carbonyl ending groups and the 
condensation combining polyaromatic rings terminated by hydroxyl and 
carbonyl groups (RD.3) [152,153]. Moreover, the minimum projection 

Fig. 6. The homogeneous cleavage ways and the main transformation pathways based on the β-O-4 type lignin dimer model compound, proposed by Huang et al. 
[143]. (a) Six ways of homogeneous cleavage. (b) Three possible synergistic reaction pathways in transformation processes of model compound. Adapted and 
reprinted from ref. 143. Copyright 2014 Elsevier B.V. 

Table 5 
BDE of β-O-4 type lignin dimer model compound in Fig. 6(a) (D1 and D2 are the 
main paths).  

Type D1 D2 D3 D4 D5 D6 

Bond Cβ-O Cα-Cβ O–C4 Cβ-Cγ C1-Cα Cα-O 
BDE/J⋅mol-1 245.3 259.2 380.5 323.9 374.4 303.5  

Table 6 
Activation energies of initial reaction steps in Fig. 6 at different temperatures.  

T (K) Activation energies (kJ/mol) 

Step 1 Step 2 Step 3 Step 4 Step 5 

298 245.3 259.2 257.1 240.1 219.3 
450 244.2 258.9 256.9 239.9 220.1 
600 242.4 257.6 256.6 239.6 220.5 
750 240.1 255.6 256.2 239.3 220.7 
900 237.5 253.1 255.7 239.1 220.8 
1100 233.7 249.3 254.8 238.9 220.6 
1300 229.5 245.1 253.8 238.5 220.1 
1600 223.0 238.4 252.3 237.8 219.0 
1900 216.2 231.4 250.5 236.8 218.0 

Reaction step 1: D1, step 2: D2, step 3: 1→TS 1, step 4: 1→TS 2, step 5: 1→TS 3. 
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diameter (MPD) of each molecule and their kinetic diameter (KD) are 
also presented in Fig. 7 [154]. Notably, these reaction mechanisms are 
not exhaustive, which can only be considered as representations. LBC 
produced from practical LB is much more complex than that from model 
compounds of LB and much works still remains to be settled by re-
searchers to elucidate the specific LBC formation mechanisms. 

3. Characterization of LBC 

The structure and composition of LBC have determined its proper-
ties. The commonly used LBC characterization techniques and their 
corresponding characterization structures and compositions are listed in 

Fig. 8. 

3.1. Fundamental structure of LBC 

The basic structure of LBC mainly includes specific surface area 
(SSA), pore structure, morphology, aromatic ring structure (ARS), 
crystal texture and carbon skeleton structure (CSS). SSA, pore volume, 
and pore size are highly contingent on the kind of LB and the LBCTs 
conditions. LB usually possesses 0.1–3.2 m2/g surface area contributed 
by the nature mass transmission channel pores [155]. In the pyrolysis 
process, SSA and pore volume of LBC generally increase significantly, 
and its degree is improved with temperature [61]. This may be due to 
the gradual gasification of simple molecules formed by the cracking of 
VMs such as ethylene and esters from outer surfaces of LB [156]. In 
addition, the pore structure and SSA of LBC are significantly affected by 
its inherent mineral composition [157]. Notably, one significant change 
in LBC structure compared to the original LB is that the surface is more 
uneven and coarse, which is resulted by the non-smoothness micro-
spheres generated from carbon recombination or fiber decomposition in 
LB decarboxylation reaction [90]. The size of these microsphere parti-
cles is generally in the range of 1–3 μm. And the pore structure of LBC is 
mainly composed of medium and large pores at low treatment temper-
ature, while is mainly composed of quasi-fine nanopores and micropores 
at high treatment temperature [51,156]. 

ARS, CSS and crystal texture are also very important basic structures 
of LBC. The formation of carbon rings and their condensation into larger 
structures dominated by flake and stack are always considered as the 
fundamental sources of ARS, while the interwoven links of carbon nets 
constitute the CSS of LBC [158]. The content of ARS in LBC affects its 
fate and reactivity in the environment, while the CSS and CT reveal the 
heterogeneous structure of LBC and also play a decisive role in its 
function in environment [159]. To investigate these structures in LBC, 
solid 13C NMR, Raman spectroscopy, EXAFS and XRD were applied 
[160]. 

LBC is principally amorphous with some local crystalline structure. 
Dynamic molecular structures of two kinds of LBC (wood and grass) 
under pyrolysis temperature from 100 to 700 ◦C was reported by Kei-
luweit [58]. The results are shown in Fig. S3. Four distinct categories of 
char (LBC) have been proposed: (i) the crystalline structure of the LB can 
be preserved in transition chars; (ii) the incipient aromatic 

Fig. 7. Possible reaction pathways for the formation of LBC (char and coke) [152]. Adapted and reprinted from ref. 152. Copyright 2013 the Royal Society 
of Chemistry. 

Fig. 8. Physicochemical properties and common characterization techniques 
of LBC. 
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polycondensates and heat-altered molecules are randomly mixed in 
amorphous chars; (iii) composite chars are composed of poorly ordered 
graphene stacks, which are embedded in amorphous phases; and (iv) 
turbostratic chars are mainly disordered graphitic crystallites. These 
molecular structure variations affect the durability of LBC in soil and/or 
water and function as sorbents and/or catalysts. XRD test results also 
showed that LBC had a large content of amorphous phase in the carbon 
matrix structure, accompanied by a small number of high conjugated 
lamellar aromatic structure or stacking structure cross-linked with 
random crystal structure [58,161]. And with the increase of pyrolysis 
temperature, the grain size of LBC increases, and the overall structure of 
carbon frame tends to be more ordered [58,162]. 

The scientific understanding of the skeletal structure in LBC has gone 
through the process from hypothesis, structural calculation and actual 
observation. Based on the ideal development of LBC structure, Lehmann 
[163] studied the evolution process of CSS in LB carbonization: with the 
increase of treatment temperature, the CSS was transitioned in the order 
of amorphous aromatic carbon, conjugated aromatic carbon and 
graphitized carbon. Subsequently, Brewer and co-workers [164] char-
acterized the structure of LBC from fast pyrolysis and gasification by 
quantitative calculation of 13C NMR, and proposed an aromatic clus-
tering model of LBC based on its aromatic structure characteristics. Cao 
et al. [165] also measured the changes in the aromatic clustering 
structure of LBC at treatment temperature from 300 ◦C to 700 ◦C by 
NMR, and the results to some extent supported the rationality of the 
aromatic clustering model. Recently, Professor Chen [166] simplified 
the calculation of the CSS model of various LBC by taking H/C atom ratio 
as the parameter based on the rectangular polycyclic aromatic model, 
and calculated the clusters of molten aromatic structure in LBC at 
different pyrolysis temperatures. In addition, many researchers have 
used NEXAFS to study the aromatic structure of LBC, such as its 
aromaticity and degree of aromatic condensation [58,167]. Heymann 
[168] tried to estimate the aromaticity of LBC through the spectral 
deconvolution of functional group distribution by NEXAFS spectros-
copy, and verified its polyaromatic structure according to the mecha-
nism of multiple scattering resonance. 

It is worth noting that the basic structures of LBC cannot exist 
independently. The change in one structure type often leads to the 
change in other types of structure [51,169]. For example, the develop-
ment of pore structure and SSA is mainly contributed by the ARS com-
ponents of LBC, thus the variation trend of SSA and porosity with LB 
treatment temperature is similar to that of aromaticity [156]. Therefore, 
it is necessary to link the relationships among the various structures, and 
to improve the understanding of the basic structures in LBC by consid-
ering more different calculations and observations from both partial and 
holistic perspectives. In addition, due to the limitations of previous 
studies and the difficulty in fine structure studies, the researches on the 
fine skeleton model and crystal structure of LBC at various conversion 
conditions remains to be further explored. 

3.2. Reactivity related composition of LBC 

The composition of LBC is an important index to determine its 
function, reactivity and application. Therefore, this section mainly fo-
cuses on the chemical composition and element composition related to 
reactivity of LBC as well as the changes of corresponding components in 
LBC conversion process, aiming at laying foundations for the later dis-
cussion about the function and surface reactivity of LBC. 

Macroscopic perspective. The composition of LBC can be roughly 
divided into organic components (OCs) and inorganic components (ICs). 
Among them, OCs mainly include the FC and VMs of LBC, while ICs 
mainly refer to ash part (i.e., the mineral components of LBC) [170]. 
Table S1 presents the chemical composition and related properties of 
some typical LBC. 

As the principal part of LBC, FC is the basis of its structure and the 
carrier of functionality, and generally refers to the organic solid part 

after the VMs are driven off [171]. Since FC and VMs have significant 
influence on the stability and reactivity of LBC, some applications of 
LBC, such as carrier, adsorbent and catalyst, all have certain re-
quirements on their contents [172,173]. Generally, the production of 
LBC is mainly aimed at obtaining the FC part of its OCs and ensuring the 
appropriate contents of other active organic components, so as to realize 
the controllable regulation to different functionalities of LBC. But the 
process of LBC is a physicochemical process which is difficult to control 
structures and has incomplete transformation [174]. Therefore, the OCs 
of LBC obtained through a variety of methods have a wide range of 
variations [26]. For instance, the increasing of treatment temperature 
and the prolonging of treatment time will significantly increase the 
tendency of VMs in LBC transforming into gaseous and liquid products, 
and make it easier to be separated from the LBC system with processing 
atmosphere [175]. Additionally, the decrease of VMs is the direct cause 
of the increase of FC content, which is consistent with the rule of data in 
Table S1. 

The ICs in LBC are minerals in the form of ash inclusions. These 
minerals play an important role in the carbonization process of LB, 
which not only influences the formation of LBC infrastructure, but also is 
an important component of LBC reactivity bringing self-catalysis func-
tionality [169]. Mineral compounds (MCs) in LBC ash mainly include 
potassium salt, SiO2, silicate, carbonate, phosphate and the oxide-
s/hydroxides of mineral elements such as Ca, Mg, Al, Mn, Zn, or Fe [163, 
176]. And these MCs generally exist in two states in LBC: i) mineral 
phase (i.e., pure mineral salt form), and ii) composite state combined 
with surface functional groups in LBC (i.e., containing chemical bonds in 
forms of metal-C bond and metal-O-C bond, etc. [177]. MCs in the form 
of pure mineral salts is generally the source of direct catalytic ability of 
reactivity, while the bonded form of MCs plays the role of electron 
transfer as a special structure. Table S2 has summarized the composition 
and content of the common mineral elements in different LBC, mainly 
including P, K, Ca, Na, Mg, Al, and Fe etc. In addition to the mineral 
constituents included in Table S2, LBC derived from grass, rice husk and 
nut shells etc. would significantly contain more amorphous silica than 
other LBC (>2%) [178]. 

Notably, except the accumulation of ash, the increase of pyrolysis 
temperature may also lead to the transformation of the structure and 
crystal form of MCs in LBC, making them more crystallized and less 
soluble [179,180]. Sun and colleagues [181] reported that, when the 
pyrolysis temperature increased to 900 ◦C, Fe in ash of coconut shell 
biochar would undergo a phase transition from FeCl2/FeCl3/Fe(NO3)3 to 
α-Fe/Fe3C, and its solubility also gradually decreased. A similar phase 
conversion process could also occur in other typical MCs (such as Ni, Mg 
and Si) of LBC during the heat treatment of LB [178,179,182]. And 
possible reactions which could occur in the inorganic phases mainly 
include dehydration, dichlorination/denitration/decarboxylation and 

Fig. 9. Possible chemical transformation of mineral elements during the py-
rolysis process from LB to LBC (the gradual change of color represents the 
gradual change of substance composition). Cited from the corresponding ref-
erences: Mg [182], Si [180], Fe [179,184]. 
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reduction etc. [183]. Fig. 9 summarizes the possible phase transition 
paths and laws of several typical MCs during pyrolysis process from LB 
to LBC (Mg [182], Si [180], Fe [179,184]). Based on the phase trans-
formation rules of these mineral elements in LB carbonization, re-
searchers explored and developed various functional LBC materials by 
using the reactivity properties brought by its mineral composition [185, 
186]. It is not difficult to see from above that the ash components (i.e., 
the MCs) of LBC is indeed an important source of LBC functionality. 

In summary, the OCs of LBC lay the foundation of its structures 
(including carbon frame structure and aromatic structure, etc.), while 
the interaction between ICs and OCs further improves the structures and 
plays role as the component of active sites providing functionality and 
reactivity for LBC. However, the carbon stability of OCs, the fine 
structure of ICs (such as the types of some mineral elements, crystal 
types and mixed crystal structures), and the specific interaction mech-
anism between OCs and ICs are still unclear and not systematic, which 
need further study and discussion. 

Microscopic perspective. Element is the cornerstone of substance 
structure and function. The carbonization of LB is actually a process in 
which various elements undergo physical and chemical transformation 
to produce different species [169]. The elements that compose LBC 
mainly include C, H, O, N and some mineral elements (shown in 
Tables S1 and S2). These elements have different contents in LBC, and 
their combination with each other constitutes its different structures and 
reactivity units [187].  

i) Carbon, hydrogen and oxygen. They are the most dominating elements 
in LBC [188]. And their existing forms in LBC can mainly be divided 
into: i) inorganic phase, existing in mineral salts such as carbonate 
and bicarbonate, ii) organic phase, combined to form the lipid ring 
structure and ARS, organic compounds in VMs, and active functional 
groups (AFGs) components on LBC surface [169,188]. Among them, 
C is the most basic and important element, and its content is 
generally the highest among all elements. In requirements of some 
processes, the main purpose of LBC production is to obtain highly 
enriched C components from LB including persistent free radicals 
(PFRs) centered on carbon [174]. As for H, although its content is 
small (generally accounting for 1%–6% of the total mass of LBC), it 
constitutes important active components in LBC such as hydrogen 
bonded and AFGs [189]. And its composition and structure are often 
needed to be indirectly characterized by analyzing and measuring 
other elements [160,169]. Regarding the O element, it is involved in 
the formation of nearly all functional groups on LBC surface, 
including hydroxyl group, epoxy, carboxyl, acyl, carbonyl, ether, 
ester and sulfonic group, and plays important roles in the chemical 
reaction behaviors of LBC [169,188]. 

The composition of C, H and O or the ratios of H/C and O/C are often 
used as the evaluation indicators for the particular characteristics and 
structures of LBC, such as aromaticity and functionality [190,191]. 
Manyà and co-workers [78] reported that there was an obviously 
negative correlation between H/C and O/C ratios and the aromaticity of 
LBC. And Spokas [192] found that the smaller the O/C ratio was, the 
more stable the LBC was and the less it aged. Besides, C, H and O, 
whether in organic or inorganic (mainly organic) phases, will undergo 
significant changes in composition and morphology under the influence 
of temperature. In the inorganic phase, when the pyrolysis temperature 
gradually increases, these three elements will break away from LBC 
system due to the crystal transformation of mineral salts [184,193]. 
While in the organic phase, the increasing temperature promotes the 
cleavage, decomposition and aromatization reactions of organic struc-
tures in LBC, leading to the loss of large amounts of small molecules 
(such as CO2, H2O and H2). Additionally, since C, H and O in the organic 
phase occupy the majority of total C, H and O elements, their compo-
sition or changes of H/C and O/C ratios can generally reflect the 
structure changes in the whole LBC [167,194].  

ii) Nitrogen. N is the most abundant element in LBC except for C, H and 
O, which is mainly existing in peptide bonds and proteins formed in 
LB during plant growth and development [195], and generally 
absorbed by plants from the growing water/soil environment in the 
form of NO3

− or NH4
+ [196]. Due to the different absorption and 

utilization of N in various growth stages and different parts of plants, 
the N content of LBC derived from corresponding LB is generally 
different [195,197]. For example, leaves (such as grass leaves and 
bamboo leaves) are the parts needing large amounts of N to syn-
thesize in the process of plant growth and development, so the N 
content of LBC produced from them is higher than that derived from 
tree trunks (with low content of chlorophyll and protein) [188,198]. 
Moreover, the N species in LBC generally presents in the organic part 
with the forms of protein peptide bond, amine, imine, amide, nitro, 
nitroso, pyrrole and pyridine, while the inorganic part mainly exists 
in forms of NO2

− , NO3
− and NH4

+ [199]. And during the pyrolysis 
process, with the increase of temperature, the N in organic part of 
LBC will be transformed from the protein-N and amine-N in the 
original LB into heterocyclic N such as pyrrole and pyridine 
accompanied with the aromatization of the C element [156,200]. 
When the temperature rises to a very high level, the graphitic-N may 
be also formed [200]. 

Additionally, similar to O/C and H/C ratios, C/N ratio is also an 
indicator of the properties of LBC, which reflects the effectiveness of LBC 
as a soil nutrient and is generally little affected by temperature [200, 
201]. And because LBC contains a certain amount of N, itself could be 
regarded as an N-doped material, which has wide applications in fields 
of environment and energy storage [135,202,203]. Furthermore, based 
on the transformation processes and rules of N species in LBC, scientists 
have applied the nitrogen-doped modification methods in material 
synthesis to modify the electronic band structure of materials and use it 
as the active sites of various reactions [204,205]. At present, the 
development of novel N-doped carbonaceous materials has become a 
hot topic in the field of environment.  

iii) Other elements. In addition to the four main elements mentioned 
above, there are P, Si and trace metallic mineral elements in LBC. 
In most cases, the content of P and Si depends on the type of LB, 
while the mineral elements make up only a small part of LBC 
[198,206,207]. 

P is another essential nutrient element in plant body (LB precursor), 
which is generally absorbed by plants from surrounding environment in 
forms of H2PO4

− and HPO4
2− [208]. Most wetland plants can effectively 

enrich P, so the LBC derived from them tends to have higher P content 
[188]. Some studies have confirmed that element P mainly exists in 
organic form (such as nucleic acid, phospholipid and adenosine phos-
phate) in LB, while exists in ash with forms of pyrophosphate, phosphate 
and other inorganic substances in LBC [209,210]. This is probably due to 
the thermal instability of organophosphorus in plants. Even in the 
low-temperature pyrolysis process, it is easy to produce inorganic 
phosphorus compounds through dehydration, condensation and 
decomposition [211,212]. Unlike N, P compounds (below 700 ◦C) are 
extremely difficult to volatilize, thus P in LB will eventually enter into 
LBC phase even after a series of thermochemical reactions, exhibiting 
certain intrinsic reactivity in the form of ash [188,213]. Therefore, with 
the increase of pyrolysis temperature, the total P content of LBC 
generally shows an overall rising trend. Notably, if P is transferred into 
the non-LBC phase, the P content in LBC would change inversely with 
temperature [214]. 

Compared with P, the existence of Si is more selective in LBC. Only 
Si-loving plants (such as rice, corn, wheat, and barley) using Si as a 
nutrient possess a lot of Si in their bodies [206,207,215]. And presence 
of Si is mainly related to plant adverse resistance (pest resistance, 
drought resistance and toxic heavy metals resistance, etc.) [216,217]. 
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Whether in LB or pyrolytic LBC, Si principally exists in inorganic forms 
[218,219]: i) silicic acid and easily soluble polymerized Si in LB, ii) 
crystalline Si in LBC. Xiao and colleagues [180] confirmed this by the 
conversion experiment of Si in straw LBC at different pyrolysis tem-
peratures, and pointed out that Si would dehydrate and polymerize to 
form crystalline Si along with the carbonization of LB. Moreover, Si 
basically constitutes the main part of ash in LBC converted from Si-rich 
LB, and its formed silicic acid after entering solution system shows sig-
nificant promotion effect of LBC for removing heavy metals and other 
substances [187,220]. Notably, In the Si-rich LBC, C and Si have the 
mutual protective effect during the pyrolysis process, which prevent the 
loss of each other at different temperature stages [180]. 

As for metallic mineral elements closely related to reactivity of LBC, 
in previous discussions, the composition, structure and pyrolysis trans-
formation rules of them have been analyzed in detail, which are not 
repeated here. It is worth mentioning that alkali and alkaline-earth 
metals (A&AEMs) are important components of fast-growing plants 
and mesophyll cells, so LBC derived from this kind of LB is more likely to 
retain more A&AEMs (such as timothy grass presented in Table S2) 
[221]. While heavy metals (HMs) are mainly found in LBC converted 
from plants with high enrichment capacity of HMs (i.e., hyper-
accumulators) [222,223]. During the LBC conversion process, almost all 
the HMs are retained in the LBC phase, and few of them (<2%) will flow 
into the non-LBC phase [224]. In addition, due to the special atomic 
structures, HMs may interact with carbon matrix structures of LBC to 
form PFRs (such as semiquinones, cyclopentadienyls, and phenoxyls) 
thus providing LBC with strong reactivity [225]. Fang and co-workers 
demonstrated this point detailly in their research [226]. It could be 
seen that mineral elements significantly affect the structures and func-
tions of LBC, so it is of great value and significance to carry out further 
researches and explorations. 

4. The reactivity of LBC 

The reason why the reactivity of LBC has received a lot of attention in 
chemical or biological reactions because it endows LBC with many 
active centers as the interface of the reaction, including AFGs and free 
radicals, which have strengthened its electron transfer ability and 
inherent reaction function. Also, there are studies showing that 
hydrogen bonds, interface effects and nanometer pores on LBC surfaces 
can enhance its adsorption properties and improve the efficiency of 
chemical reactions indirectly [51]. The discussion on the origin of these 
active sites is an important basis for studies of pollutant removal prin-
ciples and sustainable remediation strategies. Therefore, this section has 
focused on reactivity of LBC (mainly AFGs and PFRs) and traced its 
origin during the process of LBC conversion. 

4.1. Surface functionality mediated reactivity 

The functional groups in LBC are typically located at the binding sites 
of the O and heteroatoms (mainly N and S) on the surface of the carbon 
rings. Based on this, surface functional groups can be roughly divided 
into nitrogen-containing (NFGs), sulfur-containing (SFGs) and oxygen- 
containing functional groups (OFGs) [227]. Notably, the OFGs are 
intrinsically generated in general, while heteroatoms such as S and N 
may be bound to the surface of LBC in quantity through surface modi-
fication like doping, sulfonation or nitrification [228,229]. Similarly, 
LBC surface functional groups can be also divided into aliphatic and 
aromatic groups, and the functional groups that have been mainly 
concerned and discussed are carboxyl, carbonyl, hydroxyl and ester 
groups because of their higher abundance and activity [187]. As for 
PFRs, they are generally formed in LBC surface during LB pyrolysis in the 
presence of transition metals (TMs), remaining active for a long time in 
the environment [230]. A large number of experimental studies and 
evidences show that AFGs and PFRs constitute the main body of LBC 
functionality, and play important roles in promoting LBC-mediated 

reaction [20,231,232]. Table 7 summarizes the typical surface func-
tionality mediated reactivity and its abundance as well as functioning 
mechanism in the actual reaction. 

Oxygen-containing functional groups. Among the OFGs on LBC surface, 
carbonyl groups (C––O) have been regarded as one of the most impor-
tant groups. Derivatives derived from the C––O bond, including alde-
hyde, ketone and quinone groups, have been found to contribute 
significantly to the enhancement of the electron accepting capacities 
(EACs) of LBC [246] and the catalytic reactivity towards oxidants [247]. 
In the work of Zhang and his team [248], the contribution of surface 
functional groups of barley grass LBC to EACs was explored. They car-
ried out multiple linear regression between the functional group 
contribution and EACs, and found that the quinone groups were the 
main sites improving electron acceptability, especially under the high 
temperature condition. Moreover, study of Wu and co-workers also 
pointed out that the electron exchange capacity of LBC materials was 
positively correlated with the existence of C––O bond functional groups, 
and both quinone and hydroquinone structures contributed greatly in 
promoting electron exchange [249]. As mentioned above, the carbonyl 
groups on the surface have significantly enhanced the electron-mediated 
ability of LBC. So, during the catalytic activation of persulfate or H2O2, 
the production of hydroxyl radical or sulfate radical can be easily 
facilitated via LBC. This point have been verified in the researches of 
both Wang [250] and Duan [251]. Additionally, there are also studies 
claiming that quinone groups contribute to the formation of singlet 
oxygen [252,253], so the formation and regulation, abundance and 
distribution of carbonyl groups on the surface of LBC deserve further 
explorations. 

Besides carbonyl groups, among the OFGs on LBC surface, carboxyl 
groups and hydroxyl groups are also worthy of attention, which not only 
affect the hydrophilic/hydrophobic properties and surface charged 
properties of LBC, but also contribute to the degradation of pollutants in 
the LBC-contamination system [254]. Uchimiya et al. [255] adopted 
cottonseed shell as feedstock of LBC, and then used it for the stabiliza-
tion and removal of HMs after the oxidation of sulfuric acid and nitric 
acid. It was found that the oxidized LBC was rich in carboxyl groups and 
showed higher removal capacity to lead, zinc and copper. In the study of 
Chen, the removal rate of ammonium by LBC after hydrochloric acid 
treatment was significantly improved, which was also attributed to the 
increase in the abundance of carboxyl groups and hydroxyl groups on 
surface [256]. Notably, the carboxyl groups and hydroxyl groups are 
also conducive to electron transfer of LBC, which has been proved in the 
work of Li and his co-worker [257]. 

Heteroatoms-containing functional groups. The studies of functional 
groups containing heteroatoms on the surface of LBC mainly focuses on 
N and S atoms. The NFGs mainly exist in forms of –NH2, -NH- and 
–C––N-, while the SFGs refer to C–S, C––S, or S––O structures [258,259]. 
In general, among NFGs, quaternary-N and pyridinic-N are more stable 
[260]. The literatures have claimed that NFGs have a prominent per-
formance in catalytic redox reaction [261], and nitrogen-doped LBC 
owns a higher capacitance and stability when used as a capacitor [262]. 
This is due to the fact that the introduction of N atoms have enhanced 
the production of positively charged C atoms, which will accelerate the 
interaction between substances and surface structures of LBC, charac-
terized by the enhancement of LBC reactivity [240]. At present, the most 
extensive studies about NFGs in LBC still exist in the adsorption and 
catalytic removal of environmental pollutants, especially HMs and 
organic pollutants [263–265]. SFGs also perform well in removing 
pollutants from water (as listed in Table 7). In addition to the traditional 
means like sulfonation, Zhang [266] transplanted SFGs in the skeleton 
structure of LBC via means of plasma. And the removal rate towards 
pollutants of modified wheat LBC has greatly increased from 26.4% to 
95.5%. Notably, if the introduced S is mixed into carbon rings instead of 
forming the active functional group structure, it may destroy the charge 
balance of the covalent carbon electron system and disrupt the charge 
redistribution [240], which will have a negative effect on reactivity of 
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LBC to a certain extent and need to be avoided. Although some present 
studies (such as researches in Table 7) have been carried out on the 
surface functional groups containing heteroatoms on LBC represented as 
S and N, the research on the technology of heteroatomic functional 
groups and the influence of manufacturing conditions is still lacking. It is 
necessary for scientists to further explore how to avoid the negative 
effects of heteroatomic functional groups, increase their content quan-
titatively and controllably, and strengthen contributions of reactivity 
given to LBC by them. 

Persistent free radicals. Another functionality of concern is the PFRs, 
which are formed via the decomposition reaction of organic components 
in LB (like catechols) and the electron exchange between them and TMs 
during the pyrolysis process [267]. Conceptually, PFRs can remain 
reactivity in the atmospheric environment for hours or days and mainly 

include structures like cyclopentadienyl, phenoxyl and semiquinone 
[268]. And mediating the process of electron transfer is the main 
mechanism of its function in LBC [243]. In current studies on PFRs of 
LBC, the most commonly utilized characterization method is electron 
paramagnetic resonance (EPR), and the spectral factor of EPR, g-factor, 
can represent the types and concentrations of PFRs. Further, PFRs are 
usually divided into carbon-center and oxygen-center free radicals based 
on g-factor. The former is less than 2.0030, while the latter is greater 
than 2.0040, and g-factor between the two values are considered to be 
the PFRs containing adjacent oxygen atoms [269,270]. The presence 
and the function of PFRs on LBC surface was not clear in earlier studies. 
Through using an analogy between LBC and activated carbon, the re-
searchers found that one possible explanation for the oxidizing ability 
strengthening of H2O2 via LBC is the reception and conduction effects of 

Table 7 
A summary table of typical surface functionality mediated reactivity.  

Type of 
dominated 
surface 
functionality 

LBC preparation method Abundance (or 
concentration) of surface 
functionality 

Activated 
oxidant 

Functionality mediated reactivity Generated active 
species 

Reference 

Oxygen- 
containing 
functional 
groups 

Hydrothermal and pyrolysis of 
Wood chip 

Carbonyl groups (14.39%) PDS High amount of C––O group in LBC 
could transfer electrons to PDS to 
generate SO4⋅- 

SO4⋅-, ⋅OH [233] 

A modified sol-gel method, slow 
pyrolysis of bamboo powder 

Oxygen-containing 
functional groups (such as 
–OH and –COOH groups) 
(38.08%) 

PDS Oxygen functionality could be served 
as active sites transporting electrons for 
PS to generate radicals 

⋅O2
− , SO4⋅-, ⋅OH [234] 

Carbonization of Peanut shells 
at 300–900 ◦C 

-COOH groups, ketonic 
C––O groups (NA (a)) 

PDS -COOH and ketonic C––O of LBC were 
the essential electron donors for PDS 
activation to induce the formation of 
free radicals 

⋅OH, ⋅O2
− , 1O2 [235] 

Pyrolysis of Coconut shell at 
700 ◦C 

C=O groups (NA) PMS Electron-rich oxygen functional groups 
on LBC acted as electron mediators 
enhancing PMS activation 

SO4⋅-, ⋅OH, 1O2 [236] 

Nitrogen- 
containing 
functional 
groups 

Pyrolysis of corncob biomass 
and urea at 700 ◦C 

Pyridinic N (6.56%) 
Pyrrolic N (2.61%) 

PDS Edge nitrogens (pyridinic N and 
pyrrolic N) facilitated the interaction 
between LBC and PDS to form surface- 
bonding complexes 

Surface-bounding 
reactive complexes 

[237] 

Pyrolysis of Boehmeria nivea 
biomass fiber and urea at 900 ◦C 

Graphitic N (47.84%) 
Pyridinic N (32.54%) 

PMS The positive charge on the adjacent 
carbon of graphite nitrogen induced the 
PMS molecules to lose electrons to 
produce 1O2 through nucleophilic 
reactions 

1O2 [238] 

One-step calcination of sawdust 
and nitrogen-containing organic 
compounds as raw materials 

Graphitic N (48.28%) 
Pyridinic N (37.68%) 

PMS The nitrogen-rich LBC could more 
easily transfer electrons to the O–O 
bonds in PMS and activate PMS to 
produce reactive radicals 

SO4⋅-, ⋅OH, 1O2 [239] 

Pyrolysis of reed biomass and 
ammonium nitrate at 900 ◦C 

Graphitic N (61.66%) PDS PDS molecules were strongly bonded 
with active N sites to form metastable 
surface-confined reactive species 

Surface-confined 
activated 
persulfate-carbon 
complexes 

[203] 

Impregnation-pyrolysis process 
of rice straw with Urea 

Graphitic N (NA) PMS Graphitic N could enhance the positive 
charge of the neighboring C atoms, and 
thus boosting their interactions with 
negatively charged HSO5

−

SO4⋅-, ⋅OH, 1O2 [240] 

Sulfur-containing 
functional 
groups 

One-step pyrolysis of wood 
shavings and thiourea 

Thiophenic S (NA) PMS Sulfur moieties altered their 
surrounding electron density, making it 
favorable for PMS activation 

SO4⋅-, ⋅OH, 1O2 [241] 

One-step pyrolysis of 
nanocellulose and thiourea 

-C-S-C- groups (NA) PMS Electron-rich -C-S-C- groups could 
enhance the asymmetric spin-charge 
density of adjacent carbon atoms, 
facilitating the breaking of O–O bonds 

SO4⋅-, ⋅OH, 1O2 [242] 

Persistent free 
radicals 

Pyrolysis of bamboo at 500 ◦C Semiquinone radicals 
(7.94 × 1018 spins⋅g− 1) 

H2O2 Electrons were easily transferred from 
PFRs to H2O2, achieving activation of 
H2O2 

⋅OH [243] 

Pyrolysis of corn stalk at 500 ◦C Semiquinone radicals 
(9.67 × 1018 spins⋅g− 1) 

H2O2 Electrons were easily transferred from 
PFRs to H2O2, achieving activation of 
H2O2 

⋅OH [243] 

Wet impregnation method with 
one-step pyrolysis 

Persistent free radicals 
(~2.3 × 106 a. u.) 

H2O2 PFRs on the surface of LBC could 
directly activate H2O2 to generate ⋅OH 

⋅OH, ⋅O2
− [244] 

Pyrolysis of hyperaccumulator 
biomass containing Mn and Zn 

Persistent free radicals 
(8–10 × 103 a. u.) 

PDS Electrons were easily transferred from 
PFRs to PDS, achieving activation of 
PDS 

SO4⋅-, ⋅OH, 1O2, 
⋅O2

−

[245] 

(a) NA: not available. 
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electrons by PFRs. With the development of researches, the contribu-
tions of PFRs on LBC to the activation of H2O2, persulfate and O2 have 
been proposed [271–273]. In the study of Fang and his team [226], the 
combination of salicylic acid trapping techniques and EPR have been 
adopted to investigate the performance of LBC in catalytic activation of 
H2O2, and found that the generation of ⋅OH was correlated positively 
with the consumption of PFRs. Moreover, studies on the activation of 
persulfate [231] and degradation of pollutants like p-nitrophenol [232] 
by PFRs on the surface of LBC have also demonstrated its functionality 
and reactivity. Some similar studies are listed in Table 7. However, the 
long-term activity maintenance of PFRs is also a double-edged sword. 
There is studies demonstrating that PFRs on the surface of LBC have a 
negative effect on the plants’ germination and growth, such as maize, 
wheat and rice seed, which should not be ignored [230,274]. 

4.2. The origin of LBC surface reactivity 

Due to its good performance in promoting reaction or removing 
pollutant, LBC attracts wide attention, and research on the origin of LBC 
reactivity has also become necessary. The various active sites (especially 
AFGs and free radicals) of LBC mentioned in the previous section are 
exactly the embodiment of reactivity, and the conversion process of 
generating these active sites in the original LB have revealed the origin 
of reactivity. During the preparation of LBC, the most profound factors 
affecting LBC’s inherent functionality and reactivity are heating tem-
perature, continuous heating time and LB feedstocks [275]. In addition, 
the reactivity of LBC can be also improved by means of preoxidation, 
loading or doping [160]. Therefore, in this part, the origin of LBC 
reactivity will be introduced from two viewpoints: the inherent effects of 
LBC conversion process (endogenous transformation) and modification 
methods (exogenous strengthening). 

Endogenous transformation. The conversion process of LBC is the 
continuous decomposition reaction of macromolecular organics in LB 
and the separation/formation reaction of functional groups. And the 
changes about chemical properties related to the origin of LBC surface 
activity mainly include atomic ratio, element composition, structural 

change and generation of active species. Most active functional groups 
all will undergo a process from generation trend to functionality 
enrichment in the process of endogenous transformation. In detail, at the 
beginning of pyrolysis, the sensitive free hydroxyl groups will react with 
carbon ring structures in LB before the evaporation of water to form 
OFGs, followed by the cracking of interchain hydrogen bonds, and the 
aliphatic hydrocarbons present a tendency to convert to aromatic hy-
drocarbons [276]. When the carbonization deepens, with the transfer of 
electrons, electron-deficient C––O bonds and aromatic C––C bonds will 
be formed to further enrich surface functionality in LBC after the for-
mation of electron-rich hydroxyl structure [187]. As for PFRs, during the 
pyrolysis process in which LB and TMs coexist, the quinone or phenolic 
groups formed in LBC transfer electrons to the TMs and stabilize the 
charge distribution of molecular structure via the empty electron or-
bitals in transition metal atoms, and finally resulting in the formation of 
metastable PFRs on the LBC surface [243]. Fig. 10 shows the trans-
formation process of PFRs from LB to LBC as well as its reactivity for 
activating AOPs. Generally, PFRs will experience a transition from 
oxygen-centered to primarily carbon-centered with increasing temper-
ature [268,277]. Therefore, the regulation and control of temperature 
and residence time in the conversion process are important factors for 
LBC reactivity. 

The existence of S, N and other heteroatoms inherent in natural LB is 
different in various parts and growth stages of plants, and the content is 
generally not high (far less than the content of O), which is consistent 
with what was mentioned earlier. And the sites containing heteroatoms 
(N and S), after LB pyrolysis at high temperature, will mainly exist in 
forms of sulfate and nitrate. Therefore, active components containing S 
or N, existing in LBC, are relatively few through endogenous trans-
formation [188]. However, they still play important roles in regulating 
the reactivity of LBC [243]. By deeply analyzing and summarizing the 
transformation of N species in 3.2, Fig. 11 proposes the possible 
migration and transformation paths of nitrogenous active species during 
the conversion process from LB to LBC in order to reveal the reactivity 
origin of NFGs. 

Exogenous strengthening. Besides active LBC obtained from 

Fig. 10. The formation mechanism of PFRs in LBC and its AOPs (advanced oxidation processes) activation mechanism was proposed [226,231]. Adapted and 
reprinted from ref. 226. Copyright 2014 the American Chemical Society; Adapted and reprinted from ref. 231. Copyright 2015 the American Chemical Society. 
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endogenous substances of LB such as proteins and TMs, functional 
groups containing O, N or S as well as PFRs can be also largely intro-
duced by means of modification and doping. The main principle is to 
artificially increase the content of active substance precursors or con-
ditioning agents in the transformation system of LB, and strengthen the 
endogenous transformation process of precursors, thus significantly 
improving the conversion rate of reactivity-related components in LBC 
[23]. The introduction of SFGs is mainly through the reaction with 
simple S-containing substances, such as hydrogen sulfide, sodium sul-
fide, potassium sulfide and thiourea, while NFGs mainly depend on the 
addition of organic substances, such as urea or amine, as well as inor-
ganic ammonium (the process of transformation is similar to that 
mentioned earlier) [278,279]. As the important modification reagents, 
the use of acids/bases also play important roles in the formation of 
carboxylic and hydroxyl groups on LBC surface. Wang et al. [280] 
treated wheat straw LBC with separate hydrochloric acid and ferric 
chloride, or a mixture of the two, and found that the removal of con-
taminants was obviously increased in LBC system after acid modifica-
tion, which is contributed to the greatly increasing content of carboxyl 
and hydroxyl groups. Compared with novel plasma methods and other 
treatments, it is more commonly discussed to load metal oxides or other 
metal components in LBC. Reactivity from these types of LBC mainly 
comes from two aspects: i) abundant free active metal components in the 
produced LBC; ii) the PFRs generated through the bonding between 
metal and LBC matrix, with greater abundance of PFRs and stronger 
reactivity than LBC derived from simple LB (transformation pathway is 
basically similar to that in Fig. 11) [281]. As mentioned above, there are 
many existing methods to regulate the types and contents of active 
components on LBC surface for the improvement of its reactivity. 
However, the discussion on the origin of LBC reactivity needs to be 
further studied in terms of groups transition, contribution ratio of 
different components and efficiency of treatment methods. 

5. Expression of LBC reactivity 

In this part, based on LBC reactivity, the pathways for action of the 
reactivity are discussed from the perspective of promoting electron 
transfer, mediating some specific reactions and facilitating the genera-
tion of redox active species. This section looks forward to summarizing 
the reactivity functioning pathways of sustainable LBC and prospecting 
the future researches from a new perspective. 

5.1. Facilitating electron transfer 

The gain and loss of electrons between different substances are 
widely existed in the spontaneous or artificial reactions, which have 
contributed to the complexity and diversity of matter. In earlier studies, 
direct electron transfer was mostly through conductive iron minerals 

[282]. As research progressed, biomaterials like conductive carbon 
materials [283–285] have attracted researchers’ attention. Recently, the 
researches on LBC as electrode material are also increasing gradually 
[286,287]. Gu and colleagues [288] reported an electrode material 
made from bamboo LBC, aiming at forming micropores in LBC surface to 
enhance its electronic conductivity and electro-catalytic property 
through activation of KOH/annealing process. Despite the fact that the 
composition of LBC material contains few traditional conductive sub-
stances [90], the abundance of functional groups on its surface still 
makes it become an attractive choice to manufacture electrode materials 
for capacitors, in which phenolic groups can function as electron-donor 
while quinone groups and condensed aromatic groups play the role as 
electron-accepter [289]. LBC derived from the low sulfonated alkali 
lignin has been adopted by Hu [290] to make a supercapacitor for 
storing energy, and Jillian L. Goldfarb and co-workers activated the 
pistachio shell LBC through an alkaline impregnation method and 
applied it in electrochemical cells [291]. The former reached 96% 
capacitance retention rates after 5000 charge-discharge cycles with the 
maximum specific capacitance of 344 F/g and an energy density of 8.1 
Wh/kg, while the latter still provided 100% coulombic efficiency after 
4000 cycles. Studies have also indicated that the surface functional 
groups contributed to the overall electron flux of LBC to some extent, but 
the higher conversion temperature leads to the lower charge and 
discharge capacity [292]. Therefore, more researches are needed on the 
influence of preparation method, temperature and LB feedstock in the 
manufacturing process on the electrical conductivity of LBC. 

Another filed deserving concerns is the role of LBC in facilitating 
electron transfer associated with microorganisms in the environment. 
Previous studies have shown that LBC can promote electron transfer 
between microorganisms and substances in soil remediation, enhanced 
pollutant removal, and wastewater treatment reactors [293,294]. Chen 
and colleagues [295] investigated the direct electron transfer in the 
co-culture of several bacteria in the case of ethanol as electron donor. 
Result showed that bacteria were attached by LBC rather than direct 
contact to carbon source, suggesting that LBC is the main body to pro-
mote electron transfer of carbon source. Yu et al. [246] explored the 
performance of different rice straw LBC in the degradation of penta-
chlorophenol by sulfur-reducing bacteria. It was found that the electron 
transfer capacity brought by surface reactivity of LBC contributed 
significantly to the degradation process of pentachlorophenol. Wang 
and co-workers [296] set up two up-flow anaerobic sludge blanket re-
actors to explore the role of LBC in improving reactor efficiency and 
promoting electron transfer. After LBC was added, the electrical con-
ductivity of granular sludge increased to 23.29 ± 0.99 μS/cm, which was 
twice as high as before. Overall, the electrical conductivity is important 
embodiment of LBC reactivity, and it is contributed to strengthening the 
processes based on electroactivity through facilitating electron transfer 
whether between substances or between environmental 

Fig. 11. Migration and transformation of nitrogenous active species during conversion process from LB to LBC.  
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microorganisms. 

5.2. Mediating specific reactions 

In the aspect of facilitating chemical reactions, metals and their ox-
ides, including precious metals, are more common catalysts because of 
its efficiency and sensitivity [297]. However, as the demand for envi-
ronmental quality rising, catalysts required economic efficiency and 
environmental friendliness. Due to its high porosity, large surface area 
and various types of functional groups, LBC has been regarded as an 
excellent choice during green chemical progress. 

Among the chemical reactions mediated by LBC, researches and 
applications have mainly focused on esterification, hydrolysis, hydra-
tion and some nucleophilic reactions like alkali-catalyzed dehydroge-
nation of compounds [298–300]. J. Mahammad Rafi [301] made LBC 
from seed shells pyrolysis, and then applied it successfully in promoting 
the esterification of glycerol and acetic acid, proving that LBC was an 
effective and reusable catalyst. In general, when LBC is used to improve 
the esterification efficiency, it should be pretreated, such as sulfonated. 
Arif Hidayat and co-workers [302] applied the sulfonated coconut shell 
LBC to the esterification reaction between palm fatty acid distillate and 
methanol, and studied the reaction kinetics, finding significant 
improvement in catalytic efficiency. In addition, the effects of different 
sulfonation methods of LBC on the production of fatty acid methyl esters 
has been studied by Akinfalabi [303]. LBC’s role in the hydrolysis re-
action is inseparable from the formation of active sites on the surface, 
such as –NH2, –COOH and –OH. Rick Ormsby [304] used pine chip LBC 
for catalyzing the acidic hydrolysis of hemicellulose, while in the study 
of Xiong and co-workers [305], –COOH and –OH groups of wood 
waste-derived LBC acted as the active sites in the hydrolysis of maltose. 
As for the promotion towards hydration by LBC, Liang [306] reported 
that the lignin-based LBC performed well in the hydration of 2, 3-dime-
thyl-2-butene. Regarding the nucleophilic reactions mediated by LBC 
materials, some studies have shown that these reactions are generally 
performed through functional carbon nanotube structures in LBC [51, 
307]. However, due to the complexity of nucleophile reactions, it is 
difficult to determine the role and influence of LBC. But published 
studies still suggested that LBC has great potentials and prospects in 
mediating reaction processes and more studies are needed. 

5.3. Generating active species 

The presence of abundant AFGs and free radicals on the surface of 
LBC makes it a good choice to promote the formation of active species in 
the reaction system, either by itself or in combination with other sub-
stances like metals/metal oxides [308]. Many AFGs exist on the surface 
of LBC like aliphatic and aromatic groups, and carboxyl, hydroxyl as 
well as ester functional groups get the main attention [309]. Generally, 
the types and abundance of AFGs are higher on the surface of LBC 
produced by HTC, while the PFRs on the pyrolytic LBC also appeal to 
researchers. This section focuses on the most significant expression 
pathway of LBC reactivity, that is, promoting the production of active 
species, such as reactive oxygen species (ROS) and SO4⋅-. 

ROS, especially ⋅OH, ⋅O2
− and 1O2, have been concerned and applied 

because of the active chemical properties in the degradation of organic 
pollutants [270,310]. Fang and his team [311] reported that the PFRs 
and quinone-like structures on the surface of wheat straw LBC domi-
nantly contributed to the generation of singlet oxygen and hydroxyl 
radicals, which could be used in diethyl phthalate degradation. Yang 
[312] also demonstrated that LBC had excellent performance in trans-
forming O2 into H2O2, and produced H2O2 can be consumed through 
AFGs in LBC to further generate ROS thus to effectively degrade envi-
ronmental pollutants. Moreover, promoting the production of active 
species is also the important reflection that LBC plays an important role 
in Fenton or Fenton-like processes. Rice hull LBC and coconut shell LBC 
were used by Rubeena and his colleagues [313] to synthesize reactive 

Fenton catalyst for removing acid red 1 dye, while Fang [231] proposed 
that LBC could activate persulfate to produce sulfate radical through 
Fenton-like reactions, thus effectively degrading persistent organic 
pollutants in environment. There are many similar examples [42,314]. 
In addition, during the interaction between ozone and LBC, even su-
peroxide radicals can be generated [315–317]. Fig. 12 has summarized 
the possible pathways for LBC to promote the production of active 
species based on its reactivity. The above statements all have indicated 
the great potential of LBC in promoting the production of active species. 

Undoubtedly, as novelty way of waste utilization, the application of 
LBC is beneficial to the sustainable development of human society. 
However, Liao [230] reported that the use of LBC in the environment 
may have negative impacts on plant growth and seed germination. 
Therefore, before LBC is put into large-scale applications, the impact of 
LBC on soil texture, water condition and atmospheric environment 
should be also fully evaluated, not only for positive effects brought by 
reactivity expression, but also for potential negative effects. In addition, 
it is also necessary to take economic and technical analysis as well as 
comparison with other treatment measures into consideration, in order 
to make benign and efficient utilization of LBC reactivity. 

6. Conclusion and outlook 

The process of fossil resources regeneration relying on nature is slow, 
so it is a necessary obligation for human beings to make efforts for its 
sustainable utilization. As a renewable carbon resource, the LB can 
produce green chemical products during its pyrolysis process, contrib-
uting significantly to energy recovery and environmental remediation. 
This work has reviewed the latest developments in LBC reactivity re-
searches. The advantages and technical challenges of various LBCTs 
were first summarized from the viewpoint of sustainability. The ther-
mochemical properties of main components in LB (cellulose, hemicel-
lulose and lignin), and the relationship between their carbonization 
behavior and the distribution of functional substances were discussed. 
The polysaccharides and side chain structures of cellulose and hemi-
cellulose as well as the basic unit structure and ether bond of lignin 
significantly affect the LBC conversion behavior of LB (including reac-
tion kinetics of primary and secondary conversion, evolution of 
aromatization and repolymerization, chemical bond homolysis and free 
radical process, etc.). Emphasis was placed on the formation mechanism 
of LBC (e.g., polymerization of condensed phase species, gas-phase 
repolymerization, dehydration of biopolymers and repolymerization), 
in which the ICs in LB are the self-catalysts of these processes. The 
relationship between structures and reactivity of LBC was discussed in 
detail, finding that C, O, N and mineral elements were the important 
components of its reactivity. C and MCs participate in the formation of 
PFRs through promoting electron transfer, O is the basic element of 
almost all AFGs in LBC, while N contributes to the active N species in the 
process from LB to LBC. More importantly, the exploration of the origin 
of LBC reactivity provided valuable information for the effective utili-
zation of its active species in surface. And the expression pathways of 
LBC reactivity were reviewed from the aspects of promoting electron 
transport, mediating specific reactions and promoting the formation of 
redox active species. As a comprehensive study, it is expected to provide 
reference and basis for carbon neutralization strategies and sustainable 
biochar technologies. 

In recent years, in the sustainable utilization of biological resources, 
LBC conversion has made positive progress in preparation technology, 
conversion mechanism and reactivity exploration. However, because 
this approach still has certain requirements for environmental pressure 
and energy support, it is difficult to stably control the yield of different 
green products during conversion process. Especially in the aspect of 
material conversion mechanism and the improvement of LBC prepara-
tion efficiency, there is still some works worthy of attention by scientists 
and industries. Therefore, we have proposed a few valuable research 
contents about LBC here for researchers’ reference: 
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i) During the heating process of LB, various components will enter 
different phases due to their characteristic properties. Although 
bio-gas and bio-oil are desirable resources, they will undoubtedly 
bring negative effects on the production rate and separation cost 
of LBC products. Effective extraction and separation of resources 
and energy substances are extremely important for green devel-
opment. Hence, it is worthwhile to further compare and study the 
regulation of preparation methods and transformation conditions 
for achieving directed production of functional LBC. In addition, 
the economic and technological analysis and ecological effects of 
its large-scale application should be also revealed more clearly. 
The comprehensive utilization of life cycle assessments and other 
related green chemical assessment methods is inevitable in the 
future improvement and progress of LBC technologies.  

ii) Cellulose, hemicellulose and lignin are the main components of 
LB, and this paper reviewed their carbonization transformation in 
detail. However, during the practical preparation of LBC, the 
understanding of the mutual influence among these substances is 
not very clear, and the study on the molecular and group level is 
relatively lacking. Studies using in situ monitoring techniques, 
such as infrared technology, fluorescence monitoring and mass 
spectrometry may be helpful for synergetic transformation 
mechanism of components in LB. Moreover, a lot of work needs to 
be done to reveal the correlation between LB structures and 
charring reaction. The introduction of typical functional poly-
merization models of LB will be of great help for the overall 
simplification of the complexity brought by intermolecular re-
action, reflecting the real process of intramolecular trans-
formation in LB. Furthermore, combining molecular simulation 
to establish a comprehensive kinetic mechanism model for the 
carbonization of LB may bring deep insights to explore key re-
action pathways in this process as well as discover the origin of 
LBC reactive structure.  

iii) LB ash is thought to have impacts on LBC reactivity, such as the 
presence of HMs associated with the generation of PFRs. There 
are also many ways to improve the content of AFGs and free 
radicals on LBC surface, including pre-oxidation, loading and 
plasma treatment. But effectiveness of these improvement ways is 
limited and the researches on their modification mechanism are 
not systematic. Retaining and directly transforming as much LBC 
with active components as possible in the preparation process is 
worthy of investigation. Combined with theoretical calculation to 
guide the synthesis of LBC might provide better ideas. 
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an electron shuttle for mediating soil N2O emissions. Soil Biol Biochem 2019;133: 
94–6. 

[36] Yin Z, Xu S, Liu S, Xu S, Li J, Zhang Y. A novel magnetic biochar prepared by 
K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent 
chromium. Bioresour Technol 2020;300:122680. 

[37] Tran HN, Tomul F, Thi Hoang Ha N, Nguyen DT, Lima EC, Le GT, et al. Innovative 
spherical biochar for pharmaceutical removal from water: insight into adsorption 
mechanism. J Hazard Mater 2020;394:122255. 

[38] Hill RA, Hunt J, Sanders E, Tran M, Burk GA, Mlsna TE, et al. Effect of biochar on 
microbial growth: a metabolomics and bacteriological investigation in E. coli. 
Environ Sci Technol 2019;53:2635–46. 

[39] Ramlow M, Cotrufo MF. Woody biochar’s greenhouse gas mitigation potential 
across fertilized and unfertilized agricultural soils and soil moisture regimes. GCB 
Bioenergy 2018;10:108–22. 

[40] Wu J, Yang J, Feng P, Huang G, Xu C, Lin B. High-efficiency removal of dyes from 
wastewater by fully recycling litchi peel biochar. Chemosphere 2020;246: 
125734. 

[41] Zhu K, Wang X, Geng M, Chen D, Lin H, Zhang H. Catalytic oxidation of clofibric 
acid by peroxydisulfate activated with wood-based biochar: effect of biochar 
pyrolysis temperature, performance and mechanism. Chem Eng J 2019;374: 
1253–63. 

[42] Ouyang D, Chen Y, Yan J, Qian L, Han L, Chen M. Activation mechanism of 
peroxymonosulfate by biochar for catalytic degradation of 1,4-dioxane: important 
role of biochar defect structures. Chem Eng J 2019;370:614–24. 

[43] Zhang P, Sun H, Yu L, Sun T. Adsorption and catalytic hydrolysis of carbaryl and 
atrazine on pig manure-derived biochars: impact of structural properties of 
biochars. J Hazard Mater 2013;244–245:217–24. 

[44] Huang W, Chen J, Zhang J. Adsorption characteristics of methylene blue by 
biochar prepared using sheep, rabbit and pig manure. Environ Sci Pollut Res 
2018;25:29256–66. 

[45] Sun K, Ro K, Guo M, Novak J, Mashayekhi H, Xing B. Sorption of bisphenol A, 
17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally 
produced biochars. Bioresour Technol 2011;102:5757–63. 

[46] Yu J, Tang L, Pang Y, Zeng G, Feng H, Zou J, et al. Hierarchical porous biochar 
from shrimp shell for persulfate activation: a two-electron transfer path and key 
impact factors. Appl Catal, B 2020;260:118160. 

[47] Wang J, Liao Z, Ifthikar J, Shi L, Du Y, Zhu J, et al. Treatment of refractory 
contaminants by sludge-derived biochar/persulfate system via both adsorption 
and advanced oxidation process. Chemosphere 2017;185:754–63. 

[48] Wang J, Shen M, Gong Q, Wang X, Cai J, Wang S, et al. One-step preparation of 
ZVI-sludge derived biochar without external source of iron and its application on 
persulfate activation. Sci Total Environ 2020;714:136728. 

[49] Ni B-J, Huang Q-S, Wang C, Ni T-Y, Sun J, Wei W. Competitive adsorption of 
heavy metals in aqueous solution onto biochar derived from anaerobically 
digested sludge. Chemosphere 2019;219:351–7. 

[50] Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product 
properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 2016; 
57:1126–40. 

[51] Pignatello JJ, Mitch WA, Xu W. Activity and reactivity of pyrogenic carbonaceous 
matter toward organic compounds. Environ Sci Technol 2017;51:8893–908. 

[52] Rubin EM. Genomics of cellulosic biofuels. Nature 2008;454:841–5. 
[53] Huang D-L, Zeng G-M, Feng C-L, Hu S, Jiang X-Y, Tang L, et al. Degradation of 

lead-contaminated lignocellulosic waste by phanerochaete chrysosporium and 
the reduction of lead toxicity. Environ Sci Technol 2008;42:4946–51. 

[54] Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R. 
Hemicelluloses for fuel ethanol: a review. Bioresour Technol 2010;101:4775–800. 

[55] Liu W-J, Jiang H, Yu H-Q. Thermochemical conversion of lignin to functional 
materials: a review and future directions. Green Chem 2015;17:4888–907. 

[56] Tan H, Li J, He M, Li J, Zhi D, Qin F, et al. Global evolution of research on green 
energy and environmental technologies:A bibliometric study. J Environ Manag 
2021;297:113382. 

[57] Titirici M-M, Antonietti M. Chemistry and materials options of sustainable carbon 
materials made by hydrothermal carbonization. Chem Soc Rev 2010;39:103–16. 

[58] Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of 
plant biomass-derived black carbon (biochar). Environ Sci Technol 2010;44: 
1247–53. 

[59] Chen Z, Chen B, Chiou CT. Fast and slow rates of naphthalene sorption to biochars 
produced at different temperatures. Environ Sci Technol 2012;46:11104–11. 

[60] Meyer S, Glaser B, Quicker P. Technical, economical, and climate-related aspects 
of biochar production technologies: a literature review. Environ Sci Technol 
2011;45:9473–83. 

[61] Tripathi M, Sahu JN, Ganesan P. Effect of process parameters on production of 
biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy 
Rev 2016;55:467–81. 

[62] Mabrouki J, Abbassi MA, Guedri K, Omri A, Jeguirim M. Simulation of biofuel 
production via fast pyrolysis of palm oil residues. Fuel 2015;159:819–27. 

[63] Zhang X, Rajagopalan K, Lei H, Ruan R, Sharma BK. An overview of a novel 
concept in biomass pyrolysis: microwave irradiation. Sustain Energy Fuels 2017; 
1:1664–99. 

[64] Liew RK, Nam WL, Chong MY, Phang XY, Su MH, Yek PNY, et al. Oil palm waste: 
an abundant and promising feedstock for microwave pyrolysis conversion into 
good quality biochar with potential multi-applications. Process Saf Environ 
Protect 2018;115:57–69. 

[65] Nizamuddin S, Mubarak NM, Tiripathi M, Jayakumar NS, Sahu JN, Ganesan P. 
Chemical, dielectric and structural characterization of optimized hydrochar 
produced from hydrothermal carbonization of palm shell. Fuel 2016;163:88–97. 

[66] Antal MJ, Mochidzuki K, Paredes LS. Flash carbonization of biomass. Ind Eng 
Chem Res 2003;42:3690–9. 

[67] Heidenreich S, Foscolo PU. New concepts in biomass gasification. Prog Energy 
Combust Sci 2015;46:72–95. 

[68] Hue N. Biochar for maintaining soil health. In: Giri B, Varma A, editors. Soil 
health. Cham: Springer International Publishing; 2020. p. 21–46. 

[69] Kumar A, Saini K, Bhaskar T. Hydochar and biochar: production, physicochemical 
properties and techno-economic analysis. Bioresour Technol 2020;310:123442. 
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[78] Manyà JJ, Ortigosa MA, Laguarta S, Manso JA. Experimental study on the effect 
of pyrolysis pressure, peak temperature, and particle size on the potential stability 
of vine shoots-derived biochar. Fuel 2014;133:163–72. 

[79] Wang L, Ø Skreiberg, Gronli M, Specht GP, Antal MJ. Is elevated pressure 
required to achieve a high fixed-carbon yield of charcoal from biomass? Part 2: 
the importance of particle size. Energy Fuels 2013;27:2146–56. 

[80] Ge S, Yek PNY, Cheng YW, Xia C, Wan Mahari WA, Liew RK, et al. Progress in 
microwave pyrolysis conversion of agricultural waste to value-added biofuels: a 
batch to continuous approach. Renew Sustain Energy Rev 2021;135:110148. 

[81] Luque R, Menéndez JA, Arenillas A, Cot J. Microwave-assisted pyrolysis of 
biomass feedstocks: the way forward? Energy Environ Sci 2012;5:5481–8. 

[82] Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ. Microwave 
heating applications in environmental engineering—a review. Resour Conserv 
Recycl 2002;34:75–90. 

[83] Zhang C, Qin D, Zhou Y, Qin F, Wang H, Wang W, et al. Dual optimization 
approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and 
defect evolution. Appl Catal, B 2022;303:120904. 

[84] Haeldermans T, Campion L, Kuppens T, Vanreppelen K, Cuypers A, Schreurs S. 
A comparative techno-economic assessment of biochar production from different 
residue streams using conventional and microwave pyrolysis. Bioresour Technol 
2020;318:124083. 

[85] Bergius F. Production of hydrogen from water and coal from cellulose at high 
temperatures and pressures. J Soc Chem Ind 1913;32:462–7. 

[86] Kambo HS, Dutta A. Comparative evaluation of torrefaction and hydrothermal 
carbonization of lignocellulosic biomass for the production of solid biofuel. 
Energy Convers Manag 2015;105:746–55. 

[87] Li L, Diederick R, Flora JRV, Berge ND. Hydrothermal carbonization of food waste 
and associated packaging materials for energy source generation. Waste Manag 
2013;33:2478–92. 

[88] Li Y, Meas A, Shan S, Yang R, Gai X, Wang H, et al. Hydrochars from bamboo 
sawdust through acid assisted and two-stage hydrothermal carbonization for 
removal of two organics from aqueous solution. Bioresour Technol 2018;261: 
257–64. 

[89] Titirici M-M, Antonietti M, Baccile N. Hydrothermal carbon from biomass: a 
comparison of the local structure from poly- to monosaccharides and pentoses/ 
hexoses. Green Chem 2008;10:1204–12. 

[90] Hoekman SK, Broch A, Robbins C. Hydrothermal carbonization (HTC) of 
lignocellulosic biomass. Energy Fuels 2011;25:1802–10. 

[91] Lehmann J. A handful of carbon. Nature 2007;447:143–4. 
[92] Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J. Hydrothermal 
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