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Abstract

The growing potential of quantum dots (QDs) in biomedical applications has 

raised considerable concerns regarding their toxicological impact. Consequently, there 

has been a need to understand the underlying toxicity mechanism of QDs. In this work, 

we comprehensively investigated the bioaccumulation and toxicity of three CdSe/ZnS 

QDs (COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625) in 

Phanerochaete chrysosporium (P. chrysosporium) using confocal laser scanning 

microscopy, reactive oxygen species (ROS) measurements, and cell viability assays. 

Confocal laser scanning microscopy analytical results indicated that all the CdSe/ZnS 

QDs, with the concentration ranging from 10 to 80 nM, could accumulate largely in 

the hyphae and induce the generation of ROS, showing a direct toxicity to P. 

chrysosporium. And the bioaccumulation and toxicity of CdSe/ZnS QDs presented 

dose-dependent and time-dependent effects on P. chrysosporium. Furthermore, the 

CdSe/ZnS QDs-induced cytotoxicity was also related to their physicochemical 

properties, including particle size and surface charges: NH2 CdSe/ZnS 525 with small 

size was more cytotoxic as compared to NH2 CdSe/ZnS 625 with large size, and the 

smaller negative charged NH2 CdSe/ZnS 525 resulted in greater cytotoxicity than the 

larger negative charged COOH CdSe/ZnS 525. The obtained results provide valuable 

information for exploring and understanding of toxicity mechanism of QDs in living 

cells.
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microscopy; Phanerochaete chrysosporium

1. Introduction 

With the rapid development of nanotechnology over the past decades, 

nanomaterials have been extensively used in the fields of energy, environment, 

electronics, and biomedicine [1-7]. Quantum dots (QDs), as a functionalized 

nanomaterials, have been deemed to a new-type fluorescent probe and widely applied 

to biosensing, bioimaging, drug delivery, and cancer diagnostics, due to their unique 

advantages of narrow emission, broad excitation, high quantum yield, and excellent 

photostability [1,2,8,9]. A semiconductor core (e.g., CdS, CdSe, and CdTe) is the main 

component of a typical QD, and it can be encapsulated in a shell (e.g., ZnS) to 

enhance both electronic and optical properties and reduce core metal leaching [10,11]. 

Some QDs possess organic coatings which can increase their biocompatibility in 

water and help direct them to biological systems. However, the biosafety of QDs has 

been an intractable problem when QDs move into the clinical application because of 

their potential cytotoxicity. 

In recent years, it has been confirmed that the cytotoxicity of QDs would lead to 

cell growth inhibition, mitochondrial dysfunction, DNA damage, and apoptosis 

[12-14]. The physicochemical properties of QDs, including core composition, size, 

surface charges, and functionalization would influence their toxicity to a great extent 

[15-17]. For instance, Soenen et al. [18] found that the cytotoxicity of QDs was 

correlated with the particle size, and the smaller QDs resulted in greater toxicity. Su et 
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al. [19] reported that CdTe/CdS/ZnS QDs showed no cytotoxicity to cells while CdTe 

and CdTe/CdS QDs increased the intracellular reactive oxygen species (ROS) level 

and caused a decrease in cell viability, indicating that the ZnS shell could reduce the 

toxicity of CdTe QDs. Furthermore, Nagy et al. [13] carried out a comprehensive 

analysis to investigate the toxicity effects of sizes, surface charges, and functional 

groups of CdSe QDs on primary human lung cells. Results turned out that surface 

charges were considered to be the key factor that responsible for the toxicity of QDs 

while sizes and functional groups played a lesser role. 

To further explore and elucidate the cytotoxicity of QDs, many research groups 

have concentrated their attention on the mechanism study [20-23]. It has been widely 

believed that the release of toxic Cd2+ and the generation of ROS are the main reasons 

for QDs cytotoxicity [12,24]. Since Cd2+ can be released during the oxidation of QDs 

and bind to the sulfhydryl groups in many intracellular proteins, it may result in the 

functionality reduction of various subcellular organelles [25-27]. QDs-induced ROS 

has been verified to cause metabolic functions loss, DNA nicking and break, and 

apoptosis [12,28,29]. However, it is difficult to thoroughly understand the potential 

toxicity mechanism of QDs since QDs-caused cytotoxicity is extremely complicated 

due to the nanosize effects and heavy metal components. Once exposed to the 

biological system, QDs are almost impossible to maintain their original forms, and the 

bioaccumulation process of QDs in cells may be a significant reason for the 

complexity of mechanism. 

Phanerochaete chrysosporium (P. chrysosporium), a white-rot fungus, has been 
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widely used for the treatment of toxic organic pollutants and heavy metals contained 

wastewater because of its excellent degradation and removal ability for xenobiotics 

and heavy metals, respectively [30-33]. As P. chrysosporium was sensitive to 

pollutants and it could respond quickly to the changes of external environments [31], 

the P. chrysosporium was employed as the target microorganism to explore the 

cytotoxicity of QDs. Moreover, the physiological responses of P. chrysosporium under 

QDs exposure are still limited. Particularly, the effects of QDs exposure on the 

resistance and adaptability of P. chrysosporium have not been reported in the literature 

yet. 

In view of this, three different types of CdSe/ZnS QDs in this study were used to 

investigate their bioaccumulation and toxicity to P. chrysosporium. These extremely 

small and highly photoluminescent nanoparticles were characterized by 

photoluminescence (PL), UV-vis absorption, dynamic light scatterer (DLS), and 

transmission electronic microscopy (TEM), respectively. Scanning electron 

microscope (SEM) was used to observe the morphological changes of P. 

chrysosporium. Confocal laser scanning microscopy was applied to evaluate the 

bioaccumulation of CdSe/ZnS QDs in P. chrysosporium by generating ROS. In 

addition, the effects of incubation concentrations and incubation time on the 

bioaccumulation and toxicity of CdSe/ZnS QDs have also been evaluated in detail.
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2. Materials and methods 

2.1. Reagents and instruments 

QDs used in this work were purchased from Wuhan Jiayuan Quantum Dots 

Company (Wuhan, China). The nanoparticles were preserved as 8 �M QD in 200 �L 

borate buffer solutions. Three QDs (COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and 

NH2 CdSe/ZnS 625) were composed of cadmium selenide (CdSe) core and zinc 

sulfide (ZnS) shell and encapsulated within the uniform amphipathic polymer of 

polyethylene glycol (PEG) coating. The differences among the three types of QDs are 

the surface functional groups (i.e. –NH2 and –COOH) and particle sizes. In this work, 

all reagents must be of analytical reagent grade and were purchased from Sigma (St. 

Louis, MO, USA). Ultrapure water produced by a Milli-Q system (18.25 M� cm-1, 

Millipore, France) was used throughout the process. 

CdSe/ZnS QDs were characterized by PL, UV-vis absorption, DLS, and TEM, 

respectively. PL measurements were performed using a fluorescence spectrometer 

(FluoroMax-4, Horiba Scientific, Tokyo, Japan). The PL quantum yield (QY) of 

samples was estimated using Rhodamine 6G (QY = 95%) in ethanol solution as a 

reference standard, which was freshly prepared to decrease the measurement error 

[34]. UV-vis absorption spectra were recorded with a Perkin Elmer Lambda 750 

Near-infrared UV-vis spectrophotometer (Model UV-2550, Shimadzu, Japan). DLS 

analysis (hydrodynamic diameter and zeta (�) potential) was carried out using a 

DynaPro Dynamic Light Scatterer (Malvern Instruments). The TEM overview images 
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were recorded with a Philips CM 200 electron microscope (JEOL JEM-3010, Japan) 

operated at 200 kV. UV-vis, PL, and DLS were performed with the concentration of 

CdSe/ZnS QDs (20 nM) in borate buffer solutions, and TEM was performed with the 

concentration of CdSe/ZnS QDs (80 nM) in borate buffer solutions. 

2.2. P. chrysosporium culture 

P. chrysosporium BKMF-1767 used in this work was obtained from the China 

Center for Type Culture Collection (Wuhan, China). The fungal spores were prepared 

by subculturing on potato dextrose agar slants. Fungal spore suspensions were 

obtained by dissolving spores into sterile ultrapure water, and the spore concentration 

was adjusted to 2.0 × 106 CFU mL-1 using a turbidimeter (WGZ-200, Shanghai, 

China). 3 mL of aqueous suspensions of fungal spores was inoculated into 200 mL 

Kirk’s liquid culture medium in a 500 mL Erlenmeyer flask at 37°C for 3 days’ 

cultivation [35]. 

2.3. Incubation concentrations and time 

0.2 g P. chrysosporium pellets were seeded into 10 mL centrifuge tubes and fresh 

borate buffer solutions containing different concentrations of CdSe/ZnS QDs (0, 10, 

20, 50, and 80 nM) were added. Then these centrifuge tubes were placed in an orbital 

shaker (120 rpm) at 37°C. After incubation for different durations (0, 3, 6, 9, 15, and 

24 h), P. chrysosporium pellets were collected and washed three times with ultrapure 

water for ROS and cell viability assays. 
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2.4. Morphology observation 

After 24 h of incubation, P. chrysosporium pellets were harvested from aqueous 

medium and washed three times with ultrapure water. Afterwards, the pellets were 

stored in a refrigerator at 20°C overnight, and then dried in a vacuum freezing 

drying oven at 50°C for 48 h. The photomicrographs of P. chrysosporium pellets 

were taken by using SEM (HELIOS NANOLAB 600i, America) to observe the 

morphological changes. The elemental compositions of P. chrysosporium pellets were 

analyzed by using energy disperse spectroscopy (HELIOS NANOLAB 600i, America) 

after gold plating at an accelerating voltage of 20 kV. 

2.5. Confocal laser scanning microscopy 

0.2 g P. chrysosporium pellets were seeded into 10 mL centrifuge tubes and 

2,7-dichlorodihydrofluorescein-diacetate (H2DCF-DA) (5 �M) was added for 2 h 

incubation. The medium was then removed and the pellets were treated with different 

concentrations of CdSe/ZnS QDs (0, 10, 20, 50, and 80 nM) for 24 h. After that, the 

pellets were washed with fresh phosphate-buffered saline (PBS) for three times and 

observed by confocal laser scanning microscopy (FV1,000, TY1,318, Japan) equipped 

with double photon detector. 

2.6. Reactive oxygen species measurements 

ROS was measured using H2DCF-DA, as a fluorometric indicator previously 

described by Chen et al. [30]. H2DCF-DA could be converted into 
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2,7-dichlorodihydrofluorescein (H2DCF) by intracellular esterase, and intracellular 

ROS could transform H2DCF into 2,7-dichlorofluorescein (DCF). Thus, the 

fluorescence intensity of DCF would indicate the degree of ROS generation. Before 

CdSe/ZnS QDs exposure, P. chrysosporium pellets were mixed with H2DCF-DA (5 

�M) and incubated for 2 h. The medium was then removed and the pellets were 

exposed to CdSe/ZnS QDs with different concentrations. The solution was then 

discarded, and the pellets were rinsed with PBS for fluorescence analysis using a 

fluorescence spectrometer (FluoroMax-4, Horiba Scientific, Japan) for excitation at 

485 nm and emission at 525 nm. 

2.7. Cell viability assays 

Cell viability was measured using the colorimetric 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay according 

to the study reported by Luo et al. [12]. MTT is a yellow water-soluble tetrazolium 

dye, which can be transformed into a purple water-insoluble formazan by the living 

cells. And the content of purple formazan can directly reflect the proportion of living 

cells. Briefly, 0.2 g P. chrysosporium pellets were mixed with 1 mL MTT solution (5 g 

L-1) and incubated at 50°C for 2 h. The reaction was stopped by adding 0.5 mL 

hydrochloric acid (1 M) and the mixture was centrifuged at 10,000 rpm for 10 min 

using superspeed refrigerated centrifuge. The supernatant was discarded and the 

collected pellets were extracted in 6 mL propan-2-ol for 2 h. The centrifugation 

process was implemented again and the absorbance of the supernatant was recorded at 
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534 nm. 

2.8. Statistical analysis 

Statistical analysis was carried out in all assays. The tests were run three times 

and the results were presented as the mean of three replicates. A one-way analysis of 

variance (ANOVA) was performed with all samples, and p-values < 0.05 was deemed 

to be significantly different. All error bars represent one standard deviation (SD) of 

the arithmetic mean. 

3. Results and discussion 

3.1. The physicochemical characteristics of CdSe/ZnS QDs 

To systematically investigate diameter and surface charges effects of CdSe/ZnS 

QDs on the bioaccumulation and toxicity to P. chrysosporium, three types of QDs 

with maximum luminescent wavelengths of 525 nm, 525 nm, and 625 nm were used 

in our experiment. The UV-vis absorption and fluorescence spectra of COOH 

CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 were shown in Fig. 1. It 

can be found that the first absorption maximums of COOH CdSe/ZnS 525, NH2 

CdSe/ZnS 525, and NH2 CdSe/ZnS 625 were at 500 nm, 505 nm, and 600 nm, 

respectively (Fig. 1a). With an excitation wavelength of 380 nm, COOH CdSe/ZnS 

525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 presented obvious and symmetrical 

fluorescence emission spectra with the emission maximums at 525 nm, 525 nm, and 

625 nm without a tail (Fig. 1b), indicating that COOH CdSe/ZnS 525, NH2 CdSe/ZnS 
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525, and NH2 CdSe/ZnS 625 were nearly monodisperse and homogeneous. The zeta 

(�) potentials of COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 

were 15.8 mV, 6.4 mV, and 10.2 mV, respectively. As shown in Fig. 1c, 

hydrodynamic diameters of COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 

CdSe/ZnS 625 were 22.1 nm, 20.5 nm, and 27.4 nm, respectively, which were larger 

than those (5.6 nm, 5.2 nm, and 10.7 nm) determined by TEM (Fig. 2). The TEM 

images showed that the size distribution of QDs was uniform and the dispersancy was 

perfect. The deviation of diameter measured by DLS and TEM was ascribed to 

different surface states of nanoparticles under the tested conditions [36,37]. In details, 

QDs samples were directly tested in aqueous phase for DLS measurement while the 

solution must be strictly evaporated in TEM characterization. 

 

Fig. 1. Adsorption (a) and fluorescence (b) spectra of COOH QDs 525, NH2 QDs 525, 

and NH2 QDs 625 used in this work, and their representative DLS histograms (c). The 

concentrations of three CdSe/ZnS QDs were 80 nM.
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Fig. 2. TEM images of COOH CdSe/ZnS 525 (a), NH2 CdSe/ZnS 525 (b), and NH2 

CdSe/ZnS 625 (c), respectively.

3.2. Morphology analysis 

The morphological analysis of hyphae in P. chrysosporium was implemented 

using SEM. As shown in Fig. 3, there are obvious morphological changes when in 

presence of 80 nM of COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 

625. The original hyphae of P. chrysosporium presented tight and intact shape (Fig. 3a) 

while it became incompact and granular after exposure to a high concentration (80 nM) 

of CdSe/ZnS QDs (Fig. 3b-d), indicating that the structure integrity of hyphae has 

been destroyed. Therefore, COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 

CdSe/ZnS 625 could induce toxicity in P. chrysosporium and cause structure damage 

of hyphae. In addition, the corresponding EDS images were shown in Fig. S1. It can 

be seen that the original hyphae of P. chrysosporium contained the elements of C, O, 

Na, P, Cl, and K. After incubation with CdSe/ZnS QDs, the elements of S, Zn, Se, and 

Cd in P. chrysosporium hyphae have been detected. Based on the results, it is obvious 

that CdSe/ZnS QDs have accumulated in the surface or inside of P. chrysosporium 

hyphae. And these adsorbed or accumulated CdSe/ZnS QDs have directly exerted an 
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effect on the P. chrysosporium hyphae. 

 

Fig. 3. Morphological analysis of hyphae in P. chrysosporium exposed to (a) control, 

(b) COOH CdSe/ZnS 525, (c) NH2 CdSe/ZnS 525, and (d) NH2 CdSe/ZnS 625 at 

concentration of 80 nM for 24 h by SEM (200, 000 × Objective), respectively.

3.3. Confocal laser scanning microscopy analysis 

In order to investigate the intracellular distribution of CdSe/ZnS QDs, the 

localization of COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 in 

hyphae of P. chrysosporium were analyzed by confocal laser imaging. As shown in 

Fig. 4, the green fluorescence channels represented the infected hyphae of P. 

chrysosporium, in which COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 

CdSe/ZnS 625 were largely accumulated. With an increase of concentrations from 10 

nM to 80 nM, the accumulated amounts of CdSe/ZnS QDs also increased. To explore 
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the potential roles of CdSe/ZnS QDs in inducing intracellular oxidative stress, the 

intracellular ROS generation was qualitatively analyzed by H2DCF-DA assay coupled 

with confocal laser scanning microscopy. Fig. 4 showed that with an increase of 

CdSe/ZnS QDs concentrations from 10 nM to 80 nM, the fluorescent intensity in the 

hyphae of P. chrysosporium increased gradually, indicating that the intracellular ROS 

level also increased obviously. And all the evaluation results presented significant 

difference from control. Oxidative stress is one of the significant mechanisms of 

cytotoxicity induced by QDs [38,39]. The intracellular ROS would disturb the redox 

potential equilibrium, leading to an intracellular pro-oxidant environment, and 

ultimately cause the disruption of cell function [39]. In the present study, when 

CdSe/ZnS QDs entered to the hyphae of P. chrysosporium and accumulated largely in 

the hyphae, ROS was subsequently generated in vivo. Therefore, COOH CdSe/ZnS 

525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 were proved to be toxic to P. 

chrysosporium in the tested concentration range. 
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Fig. 4. Confocal laser scanning microscopy images of the hyphal localization (green 

fluorescence channel) of COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 

CdSe/ZnS 625, at concentrations of 10, 20, 50, and 80 nM, respectively.

3.4. Toxicity of CdSe/ZnS QDs to P. chrysosporium 

QDs toxicity depends on multiple factors including its physicochemical 

properties and environmental conditions: size, surface charges, outer coating 

bioactivity (functional groups and capping material), inoculation concentration and 

time, and photolytic, oxidative, and mechanical stability. Previous studies 

demonstrated that the toxicity of CdSe/ZnS QDs to microorganisms could be 

attributed to the Cd2+ released from CdSe/ZnS QDs [25]. A recent report indicated 

that while CdSe/ZnS QDs and Cd2+ might have similar effects on microorganic 
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survival, they had distinct mechanisms of toxicity [40]. 

3.4.1. Incubation concentrations 

 

Fig. 5. Intracellular ROS level and cell viability of P. chrysosporium incubated with 

different concentrations of COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 

CdSe/ZnS 625 for 24 h. Error bars represent one SD of the arithmetic mean. 

The toxicity of CdSe/ZnS QDs is the main reason that restricts their biomedical 

application. Thus, it is essential to systematically evaluate their biotoxicity, and herein 

the intracellular ROS level and the cell viability were investigated. In the present 

study, P. chrysosporium were incubated with different concentrations of COOH 

CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 (10 nM, 20 nM, 50 nM, 

and 80 nM for each QD) for 24 h, the intracellular ROS level and the cell viability of 

P. chrysosporium were measured, respectively. As shown in Fig. 5a-c, the intracellular 

ROS level of P. chrysosporium increased gradually with the increase concentrations 
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of CdSe/ZnS QDs. However, the intracellular ROS levels of different CdSe/ZnS QDs 

treated P. chrysosporium were different under the identical conditions. For example, 

the intracellular ROS level of NH2 CdSe/ZnS 525 treated P. chrysosporium 

overtopped 13% when the incubation concentration was 80 nM, which was greater 

than those of NH2 CdSe/ZnS 625 (9%) and COOH CdSe/ZnS 525 (7.5%) treated P. 

chrysosporium. As shown in Fig. 5d-f, the cell viability of P. chrysosporium was 

decreased with the increase concentrations of CdSe/ZnS QDs. Similarly, the cell 

viabilities of different CdSe/ZnS QDs treated P. chrysosporium were distinctly 

different under the identical conditions. For instance, the cell viability of NH2 

CdSe/ZnS 525 treated P. chrysosporium decreased more than 36% when the 

incubation concentration was 80 nM, which was greater than those of NH2 CdSe/ZnS 

625 (21%) and COOH CdSe/ZnS 525 (15%) treated P. chrysosporium. For the two 

NH2 CdSe/ZnS QDs, the results indicated the greater intracellular ROS level and 

lower cell viability were found in smaller NH2 CdSe/ZnS 525 treated P. 

chrysosporium when compared with larger NH2 CdSe/ZnS 625 treated samples. 

Because the smaller QDs were easier to be taken in by P. chrysosporium [41]. Due to 

the small particle size, CdSe/ZnS QDs could directly enter into the hyphae by several 

approaches such as macropinocytosis, caveolae-mediated endocytosis, and 

clathrin-mediated endocytosis [21]. Generally, the internalization process of 

CdSe/ZnS QDs includes the binding of CdSe/ZnS QDs to receptors on the plasma 

membrane surface and the generation of coated pits to deliver them to the intracellular 

area [42,43]. The amount of receptors on plasma membrane surface would determine 
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the uptake of QDs. Meanwhile, the endocytosis is an energy-consuming process, 

smaller QDs would consume less energy than larger QDs, which may enhance the 

internalization effect [44]. In addition, due to the negative charges on cell membrane 

surface, the internalization amount of COOH CdSe/ZnS 525 was much less than that 

of NH2 CdSe/ZnS 525. The larger negative charges made it more difficult for COOH 

CdSe/ZnS 525 to adsorb to cell membrane surface because of the electrostatic 

repulsion [41]. Therefore, the larger negative charged COOH CdSe/ZnS 525 caused 

lower toxicity to P. chrysosporium, and NH2 CdSe/ZnS 525 with smaller size induced 

greater toxicity to P. chrysosporium.

 

Fig. 6. Correlations between intracellular ROS level and cell viability of P. 

chrysosporium and QDs concentration in the medium. (a) and (d) represent COOH 

CdSe/ZnS 525, (b) and (e) represent NH2 CdSe/ZnS 525, (c) and (f) represent NH2 

CdSe/ZnS 625, respectively. 
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chrysosporium and CdSe/ZnS QDs concentration was depicted in Fig. 6. As shown in 

Fig. 6a-c, the intracellular ROS levels of NH2 CdSe/ZnS 525 and NH2 CdSe/ZnS 625 

treated P. chrysosporium increased gradually with an increase of CdSe/ZnS QDs 

concentrations in the culture medium, indicating that the intracellular ROS level was 

dose-dependent and the internalization amount of QDs increased with the increase of 

incubation concentrations. The intracellular ROS levels of NH2 CdSe/ZnS 525 and 

NH2 CdSe/ZnS 625 treated cells were partly correlated (R2 = 0.97320 and R2 = 

0.86098, respectively) with the concentrations of CdSe/ZnS QDs (10 nM, 20 nM, 50 

nM, and 80 nM). However, the intracellular ROS level of COOH CdSe/ZnS 525 

treated cells was inferiorly correlated (R2 = 0.50358) with the concentrations of 

CdSe/ZnS QDs, because the internalization amount of COOH CdSe/ZnS 525 was 

much lower than those of NH2 CdSe/ZnS 525 and NH2 CdSe/ZnS 625. Consequently, 

the lower internalization in P. chrysosporium may result in the lower intracellular 

ROS levels. Similarly, as shown in Fig. 6d-f, the cell viabilities of NH2 CdSe/ZnS 525 

and NH2 CdSe/ZnS 625 treated P. chrysosporium decreased gradually with an 

increase of CdSe/ZnS QDs concentrations in the culture medium, demonstrating that 

the cell viability was also dose-dependent. The cell viabilities of NH2 CdSe/ZnS 525 

and NH2 CdSe/ZnS 625 treated P. chrysosporium were partly correlated (R2 = 0.76371 

and R2 = 0.81698, respectively) with the concentrations of CdSe/ZnS QDs (10 nM, 20 

nM, 50 nM, and 80 nM). However, the cell viability of COOH CdSe/ZnS 525 treated 

P. chrysosporium was inferiorly correlated (R2 = 0.57772) with the concentrations of 

CdSe/ZnS QDs, which demonstrated that the less internalization in P. chrysosporium 
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may alleviate the decline of cell viability. Many cell toxicity researches have 

confirmed that QDs could undergo the exclusive intracellular localization and 

aggregate to the membranous structures and intracellular proteins, inducing the 

generation of ROS [45,46]. These QDs-induced ROS are recognized as a significant 

factor for causing the cytotoxicity. The generation mechanism of ROS is that 

photosensitive QDs could transfer electron to molecular oxygen in medium and cause 

the production of singlet oxygen, which may react with water or other molecules to 

excite the generation of ROS, including hydroxyl radical (·OH), superoxide anion 

(O2
-), and hydrogen peroxide (H2O2) [47,48]. These free radicals were demonstrated 

to cause DNA nicking and break, metabolic functions loss, and apoptosis [13]. 

3.4.2. Incubation time 

 

Fig. 7. Cell viability of P. chrysosporium exposed to (a) COOH CdSe/ZnS 525, (b) 

NH2 CdSe/ZnS 525, and (c) NH2 CdSe/ZnS 625 for different time and concentrations. 
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Error bars represent one SD of the arithmetic mean. 

The incubation time plays a vital role in the bioaccumulation and toxicity of 

COOH CdSe/ZnS 525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 in P. 

chrysosporium. The cell viabilities of P. chrysosporium exposed to COOH CdSe/ZnS 

525, NH2 CdSe/ZnS 525, and NH2 CdSe/ZnS 625 during 24 h were depicted in Fig. 7. 

The cell viabilities of P. chrysosporium were decreased with time in all CdSe/ZnS 

QDs treated samples. But the cell viabilities of different CdSe/ZnS QDs treated P. 

chrysosporium were obviously different under the identical conditions. For example, 

the cell viability of NH2 CdSe/ZnS 525 treated P. chrysosporium decreased more than 

89% at 24 h when the incubation concentration was 80 nM, which was greater than 

those of NH2 CdSe/ZnS 625 (77%) and COOH CdSe/ZnS 525 (83%) treated P. 

chrysosporium. The cellular uptake of CdSe/ZnS QDs presented a time-dependent 

saturation since the internalization amount of CdSe/ZnS QDs finally reached a plateau. 

The membrane receptors for the uptake of CdSe/ZnS QDs were gradually consumed 

as time lapsed, and the internalization rate of CdSe/ZnS QDs would decline and 

eventually reach saturation [42,49]. In addition, the less negative charges and smaller 

size made it easier and faster for NH2 CdSe/ZnS 525 to be adsorbed by P. 

chrysosporium [41,50]. With an increase concentration of CdSe/ZnS QDs, the 

decrease rate of cell viability increased in all CdSe/ZnS QDs treated samples. As the 

dose added, the concentration of CdSe/ZnS QDs on the membrane increased, and 

more CdSe/ZnS QDs could be taken up by P. chrysosporium, leading to the greater 

decrease rate of cell viability. Thus, the bioaccumulation and toxicity of CdSe/ZnS 
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QDs in P. chrysosporium presented a dose-dependent and time-dependent process, 

which is in accordance with the previous studies reported by Misra et al. [51] and 

Nguyen et al. [52]. 

4. Conclusions 

In summary, we comprehensively investigated the bioaccumulation and toxicity 

of three types of CdSe/ZnS QDs in P. chrysosporium by using confocal laser scanning 

microscopy, ROS measurements, and cell viability assays. Our results showed that the 

bioaccumulation and toxicity of CdSe/ZnS QDs in P. chrysosporium presented a 

dose-dependent and time-dependent process. After incubation by three types of 

CdSe/ZnS QDs with different particle sizes and functional groups (-COOH or -NH2), 

we found that the cytotoxicity of QDs was related to their physicochemical properties: 

the small NH2 CdSe/ZnS 525 was more cytotoxic than the large NH2 CdSe/ZnS 625, 

and the smaller negative charged NH2 CdSe/ZnS 525 resulted in greater cytotoxicity 

than the larger negative charged COOH CdSe/ZnS 525. Three CdSe/ZnS QDs were 

accumulated largely in the hyphae and exhibited toxicity to P. chrysosporium in the 

tested concentration range. Therefore, the potential risk of QDs to biosafety cannot be 

completely ruled out. Long-term studies must be implemented before QDs are 

routinely applied to the clinical medicine. 
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