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A B S T R A C T   

Currently, iron (Fe)-based heterogeneous Fenton-like processes have been widely employed for treating organic 
pollutants in wastewater. During such processes, organic pollutants are usually attacked by the generated 
reactive species and thus decomposed into some intermediates, further CO2 and H2O. Therefore, a compre-
hensive understanding of reactive species generation and utilization is significant for achieving the selective and 
effective degradation of organic pollutants in complicated water matrix. Herein, on the basis of the compre-
hensive literature survey, this review briefly analyzes the H2O2 activation mechanism over surface active sites of 
Fe catalysts, including surface Fe sites, oxygen vacancies, and electron distribution-polarized micro-areas, from 
the points of reactive species generation. Meanwhile, the guidelines for improving the Fenton-like performance 
of Fe catalysts are proposed based on this information. Furthermore, the selective oxidation of organic pollutants 
by generated reactive species, including high-valent iron oxo species (Fe(IV) = O/Fe(V) = O), hydroxyl radical 
(•OH), superoxide radical (•O2

− ), and singlet oxygen (1O2) are discussed with emphasis on the existing form and 
chemical characteristics of reactive species. Finally, the existing challenges and the prospects for water treatment 
are proposed from mechanism research and practical application aspects. We hope this review can provide a 
deeper understanding of the fundamentals of Fe-based heterogeneous Fenton-like reaction, and help readers to 
select a suitable Fenton-like system for practical applications.   

1. Introduction 

Recently, the inevitable industrialization and urbanization have 
made environmental pollution a global challenge that damages ecosys-
tems and endangers life. 

Therefore, it is of highly importance to develop environmental 
remediation technologies to eliminate contaminants. Fenton process, 
which consists of reactive species production via activating hydrogen 
peroxide (H2O2) through the electron cycle involving Fe2+/Fe3+, has 
been widely employed for destructing refractory organic pollutant in 
wastewater [1–3]. Thereinto, heterogeneous Fenton-like reactions 
catalyzed by Fe catalysts have drawn increasing notice for broad 
application because Fe is the second most abundant metal in nature and 
almost non-toxic. Moreover, Fe catalysts can efficiently activate H2O2 to 
generate reactive species in a wide pH range [4–6]. 

In the past few decades, numerous Fe catalysts, roughly including 
natural Fe catalysts that exist in natural environment (i.e., Fe-containing 
clay, Fe-containing zeolite, Fe oxide minerals, and Fe sulfide minerals) 
[7–10], and synthetic Fe catalysts (i.e., Fe-containing metal organic 
frameworks (MOFs), loaded Fe catalysts, Fe-containing resins, Fe- 
containing complex, zero-valent Fe, Fe-containing perovskite, Fe oxy-
chloride (FeOCl) and single-atom Fe catalysts) [11–19] have been 
developed to study their catalytic behavior in heterogeneous Fenton-like 
system, and the development history since 1990 are concluded in Fig. 1. 

During such catalytic processes, the surface Fe sites are usually 
considered as the main active sites for H2O2 activation [17,20–22]. 
Recently, relevant studies also reported that some microstructures over 
Fe catalysts surface, such as oxygen vacancies (OVs), and electron 
distribution-polarized micro-areas have also been regarded as potential 
active sites for activating H2O2 [23–26]. The routes of H2O2 
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decomposition at these active sites can be primarily described as 
adsorption, electron transfer, and cleavage of O–O bond, Fe-O bond, or 
O–H bond, following by generation of corresponding reactive species 
such as high-valent iron oxo species (i.e., Fe(IV) = O and Fe(V) = O), 
hydroxyl radical (•OH), superoxide radical (•O2

− ), and singlet oxygen 
(1O2) [27–29]. Nevertheless, conflicting views on H2O2 activation and 
reactive species generation still exist. For instance, some studies have 
pointed out a changeover of reactive species from •OH to Fe(IV) = O 
with pH transitioning from acidic to near-neutral in Fe0/H2O2 system 
[30,31], however this was refuted by other studies that excluded the 
function of Fe(IV) = O in Fe0/H2O2 system [32,33]. Likewise, Chen et al. 
found that both •OH and a weak oxidant (possibly Fe(IV) = O) were 
produced in the ferrihydrite-induced Fenton-like reaction [34], differing 
from other studies that focused mainly on the presence of •OH in the 
ferrihydrite/H2O2 system [35,36]. Therefore, it remains important and 
desirable to understand the generation of reactive species in Fe-based 
Fenton-like reactions, where the key is the H2O2 activation mecha-
nism over active sites. 

In addition to reactive species generation, there is ongoing contro-
versy regarding the selective degradation of organic pollutants by 
reactive species. In the majority of literature relating to Fe-based Fenton- 
like reactions, it is considered that •OH is non-selective [29], •O2

− and 
other non-radical species involving 1O2 and Fe(IV) = O/Fe(V) = O are 
able to selectively degrade organic pollutants owing to the nature of 
these reactive species [37–39]. For example, •O2

− has been reported to 
react actively with some electrophilic compounds such as carbon tet-
rachloride (CCl4) owing to its strong nucleophilicity [40,41]. Mean-
while, the electrophilic Fe(IV) =O and 1O2 prefer reacting with electron- 
rich pollutants in the manner of adding to the unsaturated bonds like 
S═O, C═C, and/or electron transfer [42]. Conversely, •OH is generally 
accepted to show universal reactivity with most target pollutants. 

Nevertheless, Chen et al. proposed that in Fe-oxidized carbon nanotubes 
(OCNT)/H2O2 system with surface-localized •OH as the dominant 
radical, the organic pollutants (i.e., methyl blue (MB) and chrysoidine G 
(CG)) showing high affinity to catalyst could be degraded with higher 
rate constants than the organic pollutants (i.e., 4-chlorophenol (4-CP) 
and atrazine (ATZ)) showing low affinity to catalyst [43]. That is to say, 
except for the nature of reactive species, their existing form (i.e., surface- 
bound or free) is also a key factor for achieving selective oxidation. 

Recently, numerous reviews have systematically discussed the types 
of Fe catalysts in heterogeneous Fenton-like reactions, the character-
ization techniques for identifying Fe catalysts, as well as the modifica-
tion strategies for enhancing Fenton-like activity of Fe catalysts 
[4,44–48]. There are also reviews that discussed the interfacial mech-
anisms of Fe-based heterogeneous Fenton-like reactions including ho-
mogeneous catalysis mechanism, heterogeneous catalysis mechanism, 
and heterogeneous reaction-induced homogeneous mechanism [29,49]. 
In addition, the application of Fe-based heterogeneous Fenton-like re-
actions for degrading emerging pollutants, and important factors influ-
encing the Fenton-like performance of Fe catalysts have also been 
summarized [5,6,50]. These reviews made great progress in summari-
zing Fe-based heterogeneous Fenton-like reactions and promoted their 
application. Nevertheless, to our knowledge, there is no comprehensive 
review analyzing the mechanism of H2O2 decomposing into reactive 
species over active sites, and elucidating the mechanism of selective 
degradation of organic pollutants. Herein, in this critical review, the 
interactions between H2O2 and surface active sites of Fe catalysts, 
including surface Fe sites, oxygen vacancies, and electron distribution- 
polarized micro-areas were scrutinized in-detail from the aspect of 
reactive species generation. Meanwhile, the selective oxidations of 
organic pollutants were discussed with special attention to the existing 
form and chemical characteristics of generated reactive species. The 

Fig. 1. The development of Fe catalysts in Fenton-like process.  

Fig. 2. The decomposition behavior of H2O2 at surface Fe sites, oxygen vacancies, and electron distribution-polarized micro-area.  
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existing challenges and suggestions for further research were also put 
forward, which intended to provide useful information on the devel-
opment of Fe-based heterogeneous Fenton-like systems for environ-
mental application. 

2. The activation mechanism of H2O2 over surface active sites on 
Fe catalysts 

Fe-based heterogeneous Fenton-like reactions have been commonly 
employed to treat organic pollutants in wastewater, which show great 
potential and prosperous application for in-situ destruction of toxic and 
recalcitrant organic pollutants. Although the basic knowledge for such 
Fenton-like processes have been excavated, there are still different views 
on the activation mechanism of H2O2. In-depth understanding the 
interaction between H2O2 and surface active sites is paramount for 
explaining the activation mechanism, which may provide theoretical 
guidance for regulating the generation of reactive species. The typical 
surface active sites and reactive species in natural Fe catalysts-based 
heterogeneous Fenton-like systems have been summarized in Table S1, 
and that of synthetic Fe catalysts have been summarized in Table S2. On 
the basis of information in Table S1 and Table S2, the main catalytic 
active sites for H2O2 activation could be regarded as surface Fe sites, 
oxygen vacancies, and electron distribution-polarized micro-areas 
(Fig. 2). 

2.1. Surface Fe sites 

Since the discovery of heterogeneous Fenton-like reaction, surface Fe 
sites have been considered as the typical active sites for activating H2O2 
because of the significant function of Fe in classical homogeneous Fen-
ton process [29]. As present in Table S1 and Table S2, surface Fe sites 
mainly exist in the valence state of zero-valence (Fe0), divalence (Fe(II)), 
and trivalence (Fe(III)) to react with H2O2, then causing production of 
various reactive species. 

2.1.1. Zero-valent Fe 
Over the past decades, Fe0 has attracted significant attention as 

surface active sites during Fenton-like reactions because of the low 
redox potential of Fe(II)/Fe0 (− 0.44 V) [65]. In general, Fe0 does not 
directly activate H2O2 to generate reactive species, but serve as the 
source of Fe(II) and H2O2. For example, the dissolved oxygen (DO) in 
solution can accept two electrons from Fe0 to produce H2O2 (Eq. (1)), 
and Fe0 could be quickly oxidized to Fe(II) through two-electrons 
transfer process with H2O2 (Eq. (2)) [51,52]. Du et al. prepared micro-
scale zero-valent iron (mZVI) for Fenton-like degrading sulfamethoxa-
zole. The results indicated that Fe0 was firstly oxidized to Fe(II) through 
two-electron transfer reaction, the generated Fe(II) then activated H2O2 
to form •OH to degrade sulfamethoxazole [51]. Likewise, Yang et al. 
proposed that the process of Fe0 oxidation by DO was spontaneous and 
could lead to the Fe(II) generation, which then together with H2O2 to 
initiate reactive species generation [53]. 

Fe0 +O2 + 2H+→Fe(II)+H2O2 (1)  

Fe0 +H2O2 + 2H+→Fe(II)+ 2H2O (2) 

Nevertheless, the reaction rates of Fe0 with H2O2/DO are highly pH- 
dependent. As previous literature reported, neutral and alkaline condi-
tions (i.e., pH = 5) usually favored the precipitation of more iron hy-
droxides/oxides, which could cover Fe0 and hinder the contact of Fe0 

with H2O2/DO, thus deteriorating the reaction rate [52,54]. While 
lowering the pH to extremely acidic conditions (i.e., pH = 1) could lead 
to rapid dissolution of Fe and therefore low utilization of Fe0, which may 
also diminish the catalytic performance [53]. 

Except for reaction rates, the reactive species types formed in Fe0/ 
H2O2/DO system may also vary with solution pH [31,33,55]. In a typical 
process, the production of reactive species in Fe0/H2O2/DO system is 

generally arrived from the Fe(II)/H2O2 reaction, where pH variation 
usually drive the mechanism changeover from •OH under acidic con-
dition (i.e., pH = 3) to Fe(IV) = O under circumneutral pH (i.e., pH = 5 
and 7). The influencing mechanism will be discussed in the section of 
divalent Fe. Therefore, the hypothesis that Fe(IV) = O was mainly 
existed under circumneutral pH in Fe0/H2O2/DO system was proposed 
by some researchers. For example, according to the quenching efficiency 
of 2-propanol under different pH, Katsoyiannis et al. concluded that the 
reaction between Fe0 and H2O2/DO generated •OH at pH 3, and a more 
selective reactive species (likely Fe(IV) = O) was generated at circum-
neutral pH [31]. Sedlak et al. also studied the variation of reactive 
species at different pH in Fe0/H2O2/DO system based on the results of 
probe compounds oxidation. To be specific, the oxidation of benzonic 
acid and 2-propanol that could only be oxidized by •OH decreased as pH 
increasing from 3 to 7. While the oxidation products yields of ethanol 
and methanol that could react with both •OH and Fe(IV) = O increased 
until pH 7. These demonstrated that •OH was the main oxidant at acidic 
condition, while at higher pH, a different oxidant (i.e., Fe(IV) = O) was 
mainly presented [30,55]. 

However, this statement proposed according to the yields of probes 
oxidation products, that reactive species can be changed from •OH at 
acidic pH to Fe(IV) =O at near-neutral pH, was questioned by Pang et al. 
[32,33]. They believed that the different yields of oxidation products at 
various pH may be related to the complex reactions of •OH with the 
compound. To be specific, •OH generally reacted with probe compound 
to produce some reactive organic radical intermediates prior to form 
stable products. The solution chemistry (i.e., absence or presence of iron 
redox species) at different pH may interfere with the further conversion 
of these organic radical intermediates into corresponding products 
through reacting with these reactive organic radical intermediates 
[32,56], therefore leading to the distinct yields of products. They also 
used methyl phenyl sulfoxide (PMSO) and dimethyl sulfoxide (DMSO) as 
indicators to confirm the presence of Fe(IV) species since a specific 
oxygen-atom transfer tended to happen between these compounds and 
Fe(IV) = O, and resulting in the generation of corresponding sulfones 
(methyl phenyl sulfone (PMSO2) as well as dimethyl sulfone (DMSO2)). 
The results indicated that no sulfone products were observed at pH range 
of 2–9, which ruled out the function of Fe(IV) in Fe0/H2O2/DO system 
[33]. This contradictory result may be related to the following reasons: 
(i) there is no Fe(IV) = O presented in Fe0/H2O2/DO system. Never-
theless, the oxidation of pollutants may occur mainly on/or near the Fe0 

surface at circumneutral pH, and under acidic conditions, it may occur 
mainly in aqueous solution. Hence, the quenching agent such as 2-prop-
anol presented in aqueous solution would have different effect on the 
removal efficiency at acidic pH and circumneutral pH. It was thus mis-
apprehensive that a different active species such as Fe(IV) = O was 
generated [57]; (ii) the insufficient use of PMSO and DMSO may result in 
the lack of PMSO2 and DMSO2 production due to the interference from 
•OH, since previous studies reported that PMSO and DMSO could also 
react with •OH in a faster reaction rate (k•OH, DMSO = 7.00 × 109 M− 1 

s− 1, k•OH, PMSO = 3.61 × 109 M− 1 s− 1) [58,59] than with Fe(IV) (k Fe(IV), 

DMSO = 1.26 × 105 M− 1 s− 1, kFe(IV), PMSO = 1.23 × 105 M− 1 s− 1) [60]. 

2.1.2. Divalent Fe 
The reaction between H2O2 and Fe(II) has been extensively 

researched since the discovery of their oxidative ability by H.J.H. Fenton 
[29]. Even so, it is still controversial whether the active species in such 
reaction process is •OH resulting from O–O bond homolysis (Eq. (3)) or 
ferryl species (i.e., Fe(IV) = O) arising from O–O bond heterolysis (Eq. 
(4)) within Fe(II)–H2O2 complex [28,29,61]. These two pathways are 
usually in competition depending on the conditions (i.e., solution pH 
and the chemical environment of Fe) [63]. As mentioned above, the 
variation of solution pH may lead to mechanism changeover from •OH 
to Fe(IV) = O in Fe(II)/H2O2 reaction, and this may be related to the 
effect of pH on the coordination environment around Fe [63–65]. For 
instance, the OH– might compete with H2O2 to coordinate with catalyst 
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oxidative reactivity between these two reagents observed in experiments 
[76]. In fact, in most of Fe-based Fenton-like reactions, the reaction 
between H2O2 and Fe(III) is usually underappreciated because of its 
relatively lower reaction rate. The primary proposed role of Fe(III) is 
acting as a source of Fe(II), and this process is often considered as the 
rate-limiting process in Fenton-like reactions [79,80]. It is attractive to 
understand more roles of Fe(III) in the process of H2O2 activation to 
promote the development of Fe-based Fenton-like reactions. 

For example, except for O–O bond homolysis, some studies also 
proposed interesting reactions induced by Fe(III) hydroperoxo to 
generate Fe(IV) = O [77,81]. To be specific, Kim et al. found that in FeTi- 
ox/H2O2 system, the Fe(III)-Ti-OH over catalyst surface tended to react 
with H2O2 and form a stable Fe(III)-Ti-OOH complex. Then Fe(III)-Ti- 
OOH complex could react with water and result in the generation of 
Fe(IV) = O2+ (Fig. 4(A)). The strong interaction between H2O2 and TiO2 
support was considered to be an important factor triggering this process 
[77]. This finding provides a new insight into the role of support in Fe 
catalysts. In fact, except for allowing better dispersion of Fe sites on the 
catalysts surface, it is also proposed that the support may strongly react 
with H2O2 to form a stable complex [67]. Then affecting the reaction 
between H2O2 and Fe on the catalysts surface, and thus the identity and 
reactivity of consequent reactive species. 

Recently, Waite et al. also proposed a mechanism of Fe(IV) = O 
generation from Fe(III) hydroperoxo in homogeneous [FeIII(OH) 
(tpena)]+/H2O2 system. They reported that [FeIII(OH)(tpena)]+ could 
react with H2O2 to form [FeIII(OOH)(tpena)]+ complex (Eq. (7)). The 
[FeIII(OOH)(tpena)]+ could then decompose to [FeIV(O)(tpena)]+ and 
•OH via O–O bond homolysis with rate constant of 0.29 s− 1 (Eq. (8)). 
Meanwhile, the combination of [FeIII(OOH)(tpena)]+ and [FeIII(OH) 
(tpena)]+ also led to the generation of [FeIV(O)(tpena)]+ with rate 
constant to be 2.0 × 105 M− 1s− 1. Besides, quantification of these reac-
tive species showed that [FeIV(O)(tpena)]+ was generated in much 
higher yields than •OH. All of these data indicated that the reaction 
between [FeIII(OOH)(tpena)]+ and [FeIII(OH)(tpena)]+, rather than 
homolysis of O–O bond of [FeIII(OOH)(tpena)]+ mainly contributed to 
the formation of [FeIV(O)(tpena)]+. They also found that at higher H2O2 
concentration, [FeIII(OOH)(tpena)]+ could further react with H2O2 (k =
1.5 × 102 M− 1s− 1) and lead to the generation of more •OH, which 
provided more guidance for investigating the mechanism of Fe(III)/ 
H2O2 reaction [81]. 

Fe(III) + H2O2 → Fe(II) + HO2⋅ + H+ (5)  

HO2⋅ ⇌ ⋅O−
2 + H+ (6)  

[
FeIII(OH)(tpena)

]+
+ H2O2→

[
FeIII(OOH)(tpena)

]+
+ H2O (7)  

[FeIII(OOH)(tpena)]+ + H2O → [FeIV(O)(tpena)]+ + ⋅OH + H2O (8) 

For the generation of Fe(V) = O species, the water-assisted and 
carboxylic acid-assisted mechanisms have been proposed during the 
process of hydrocarbon oxidations [82–84], and a number of Fe(N4) 
complexes with cis-labile sites have been reported to follow these 
mechanisms. For example, the [FeII(TPA)(NCCH3)2]2+ (TPA = tris(2- 
pyridylmethyl)-amine) in acetonitrile could react with excess H2O2 and 
generate (TPA)Fe(III)(OOH) intermediate. Then water molecule could 
bind to distal oxygen atom of (TPA)Fe(III)(OOH) intermediate through 
hydrogen-bonding, leading to heterolysis of O–O bond and loss of ter-
minal OH as water, finally forming an FeV(O)(OH) oxidant (Fig. 4(B)) 
[83,84]. Like water, it is also found that in the mixture of acetic acid and 
acetonitrile, carboxylic acid could bind to the Fe center and assist in the 
generation of FeV(O) through promoting the O–O bond cleavage within 
Fe(III) hydroperoxo (Fig. 4(C)) [83,85]. Although these mechanisms are 
rarely reported in Fe-based heterogeneous Fenton-like reactions, the 
above findings undoubtedly provide new insights into the regulation of 
Fe(IV) = O/Fe(V) = O production in Fe-based heterogeneous Fenton- 
like reactions. 

In short, surface Fe sites (Fe0, Fe(II), and Fe(III)) can effectively 
activate H2O2 to produce various reactive species including Fe(IV) = O/ 
Fe(V) = O, •OH, and •O2

–. Additionally, great attention should be paid to 
the factors such as reaction environment (i.e., pH and solvent) and 
electronic structure of Fe center, since these may influence the H2O2 
decomposition behavior, and therefore the generation of reactive spe-
cies during Fenton-like reactions. Also, the operating factors such as 
dosage of Fe catalysts and H2O2 may affect the types of reactive species, 
because the generated reactive species will react with excess Fe catalysts 
(Eqs. 9–11) and H2O2 (Eqs. 12–14) [6,47], therefore leading to the 
conversion or vanishing of reactive species. 

Fe(III)+HO2⋅→Fe(II)+O2 +H+ (9)  

Fe(III)+ ⋅O−
2 →Fe(II)+O2 (10)  

Fe(II)+ ⋅OH→Fe(III)+OH− (11)  

H2O2 + ⋅OH → HO2⋅ + H2O (12)  

H2O2 + HO2⋅→O2 +H2O+ ⋅OH (13)  

H2O2 + ⋅O−
2 → O2 + OH− + ⋅OH (14)  

2.2. Oxygen vacancies 

OVs are generally considered as the most prevalent anion defects on 
metal oxides, where the neighboring electrons that previously occupied 

Fig. 4. (A) Proposed reaction pathway in FeTi-ox/H2O2 system [77]; (B) Scheme for the water-assisted mechanism and (C) carboxylic-acid-assisted mechanism [83].  
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3.2. Selective oxidation based on the chemical characteristics of reactive 
species 

3.2.1. •O2
– and 1O2 

•O2
– and its conjugate acid HO2• (HO2• ⇌ •O2

− + H+, pKa = 4.88) 
(Eq. (6)), are another types of radicals commonly detected in Fe-based 
Fenton-like systems, which can be generated through the interaction 
between Fe(III) and H2O2 (Eq. (5)), or interaction between •OH and 
H2O2 (Eq. (12)). Most of previous researches have reported that •O2

– is a 
versatile reactant with strong nucleophilicity, which can react with 
organic pollutants by one-electron transfer, proton abstraction, or 
nucleophilic substitution (Fig. 7) [106,113]. Although the reactivity of 
most organic pollutants (i.e., diquat, atrazine and deethylatrazine) with 
•O2

– are significantly lower than that with •OH on account of the lower 
oxidation potential of •O2

– ((E0(•O2
–/H2O2) = 0.93 V vs (E0(•OH/H2O) =

2.72 V)/(E0(•OH/OH–) = 1.89 V)) [114,115]. It should be noted that 
•O2

– could react actively with some electrophilic compounds (i.e., 
quinone derivatives, CCl4, chloroform (CHCl3), and hexachlorobenzene 
(C6Cl6)) due to its strong nucleophilicity (Eqs. 16–17) [37,40,113]. For 
example, Sawyer proposed a possible reaction mechanism between 
C6Cl6 and •O2

–, where •O2
– would react with C6Cl6 through nucleophilic 

addition and then lead to the loss of chloride (Cl-) (Fig. 9(A)) [41]. 
Meanwhile, some studies also proposed that •O2

− could lead to the 
degradation of perfluorooctanoic acid (PFOA) by firstly nucleophilic 
attacking the C-F bond, followed by •O2

–-mediated decarboxylation 
[116,117]. Nevertheless, this may be achieved with the assistance of 
multiple reactive species since Javed et al., found that •O2

− alone played 
no significant role in PFOA degradation [118]. Meanwhile, it is worth 
noting that the reactivity of •O2

– in compound less polar than water (i.e., 
H2O2, ethylene glycol, and acetone) was higher than that in deionized 
water, which may be related to the altering of solvation shell [119].   

⋅O−
2 + RX →

[
⋅O−

2 ⋯R⋯X⇌O2⋯R⋯X−
]

̅̅̅̅̅̅̅ →
Nucleophilic substitutionRO⋅

2 + X−

(17) 

Recently, most of studies also proposed that •O2
– could be reckoned 

as the precursor for 1O2, and the pathway essentially involved the 
recombination of •O2

–/ HO2• (Eqs. 18–19), the interaction of •O2
– with 

•OH (Eq. (20)), or electron transfer from •O2
– to surface metal sites 

[27,120–122]. As a non-radical species, 1O2 is possible to selectively 
react with most unsaturated organic pollutants as well as sulfide and 
amine groups via electrophilic addition or electron transfer (Fig. 7), 
while shows negligible reactivity toward saturated alcohol owing to its 
electrophilic nature [123,124]. For example, the addition of 1O2 to 
benzene ring of isoproturon has been reported by researchers [125]. 
Additionally, Barrios et al., carefully studied the reaction mechanisms of 
1O2 with various organic compounds through DFT calculations, where 
the mechanisms mainly involved single electron transfer and addition 
(Eqs. 21–22). As can be seen from Fig. 9(B), phenolates underwent both 
single electron transfer (dissociated OH group) and 1O2 addition re-
actions, while phenols primarily underwent 1O2 addition reaction. 
Meanwhile, 1O2 tended to addition to the five-membered ring of furan 
derivatives, and reacted with imidazole and the derivatives through 1,4- 
addition. As for aliphatic amines, the single electron transfer was 
considered to be the dominant mechanism [39]. This study provided an 
available guidance for better understanding the reaction between 1O2 
and organic pollutants. Moreover, owing to this kind of “substrate- 

Fig. 9. (A) The possible reaction mechanism between C6Cl6 and •O2
– [41]; (B) Major reaction mechanisms of 1O2 with structurally diverse organic compounds [39]; 

and (C) Schematic illustration of the mechanism to distinguish Fe(IV) from •OH by determining the molar radio of DEA to DIA [131]. 
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dependent” oxidation effect, 1O2-induced organic pollutants degrada-
tion process can suffer less interference from background substances in 
water (i.e., organic matters and coexisting ions). However, due to its 
mild oxidation potential (E0(1O2/•O2

–) = 0.81 V), the depletion of total 
organic carbon (TOC) by 1O2 seems to be impossible [61,111]. 

⋅O−
2 +HO2⋅+H+→1O2 +H2O2 (18)  

2⋅O−
2 + 2H2O →1O2 +H2O2 + 2OH− (19)  

⋅OH + ⋅O−
2 →OH− + 1O2 (20)  

1O2 + R → [1O2R⋅− ⋯R⋅] ←Single electron transfer [1O⋅−
2 ⋯R ⋅+]∕=→⋅O−

2 + R ⋅+

(21)  

1O2 + R →
[
1O ⋅−

2 ⋯R ⋅+] ̅̅̅̅→
Addition

[O2⋯R]∕= → O − O − R (22)  

Where 
[
1O ⋅−

2 ⋯R +
]

represented the precursor complex, 
[
1O⋅−

2 ⋯R ⋅+]∕=

and [O2⋯R]∕= represented the transition states. 

3.2.2. Fe(IV) = O/Fe(V) = O 
As another non-radical species, Fe(IV) = O/Fe(V) = O are also 

regarded as potential oxidants to selectively destruct organic pollutants 
during Fe-based Fenton-like reactions. Taking Fe(IV) = O as example, 
several studies have reported that the highly electrophilic Fe(IV) = O 
tended to react with organic pollutants comprising electron-rich groups 
(i.e., hydroxyl, amino, and methyl groups) through various reaction 
pathways (Fig. 7) including hydrogen atom transfer, hydride transfer, 
oxygen atom transfer, and electrophilic addition (Eqs. 23–26) 
[29,38,105]. For instance, Pan et al. proposed that during the process of 
tetracycline degradation, Fe(IV) = O firstly attacked the electron- 
donating groups on tetracycline through oxygen/hydrogen atom trans-
fer process, and then leading to the further destruction [126]. It was also 
reported that the degradation of phenol, nitrobenzene, and nitrophenols 
by Fe(IV) = O was initially achieved by electrophilic addition of Fe(IV) 
= O on the aromatic rings [127]. Besides, Pestovsky et al., studied the 
effects of substituent groups on the reaction rate between benzyl alco-
hols and Fe(IV) = O. They revealed that benzyl alcohols substituted with 
electron-donating groups such as p-CH3O-C6H4-CH2OH (k = 1.59 × 104 

M− 1 s− 1) and p-CH3-C6H4-CH2OH (k = 1.50 × 104 M− 1 s− 1) exhibited 
higher reaction rate than that substituted with electron-withdrawing 
groups such as p-Br-C6H4-CH2OH (k = 1.41 × 104 M− 1 s− 1) and p- 
CF3-C6H4-CH2OH (k = 1.00 × 104 M− 1 s− 1), which indicated that the 
electron-withdrawing groups (-CF3 and -Br) exhibited mild negative 
impacts, and the electron-donating groups (–OCH3 and –CH3) 

moderately accelerated the reactions [128]. 

Fe(IV)=O + RnCH − OH ̅̅̅̅̅̅̅̅̅̅̅ →

Hydrogen atom
transfer

Fe(III)OH + RnC⋅ − OH

× ̅̅→
+ O2 RnC

=O + HO2

(23)  

Fe(IV) = O + RnCH-OH ̅̅̅̅̅̅̅̅̅̅̅ →
Hydride transfer Fe(II)OH + RnC

= O + H2O (24) 

Meanwhile, the “substrate-dependent” oxidation effect of Fe 
(IV) = O offers available opportunities to differentiate Fe(IV) = O and 
•OH during Fenton-like reactions. To be specific, it was reported that 
oxy-compounds of arsenic, selenium, nitrogen, and sulfur were more 
likely to undergo an oxygen-atom transfer step when oxidizing by Fe 
(IV) = O, markedly differing from their •OH-induced oxidation [129]. 
For instance, PMSO and DMSO were usually oxidized to corresponding 
sulfone (PMSO2 and DMSO2) by Fe(IV) = O. While •OH would oxidize 
PMSO to hydroxylated products, and DMSO to ethane and methyl sul-
finic acid [105,130]. In this regard, it is capable of distinguishing Fe(IV) 
= O and •OH during reaction by comparing the formed products. 
Nevertheless, because the rate constant between •OH and PMSO/DMSO 
is relatively higher than that between Fe(IV) = O and PMSO/DMSO, it is 
recommended to use excessive PMSO/DMSO to eliminate the interfer-
ence of •OH during such process [59,60]. Recently, Dong et al. also 
proposed a novel diagnostic method for clarifying the role of •OH and Fe 
(IV) by comparing the molar ratio of formed intermediates desisopropyl- 
atrazine (DIA) and desethyl-atrazine (DEA) during atrazine oxidation 
(Fig. 9(C)). Since Fe(IV) = O tended to attract N-ethyl functional group 
of atrazine, the ratio of DEA to DIA was about 7.5 in the system domi-
nated by Fe(IV) = O and decreased to 2.0 when •OH was the primary 
oxidant [131]. Moreover, it is precisely because of this selective 
degradation mechanism, Fe(IV) = O species could be less interfered by 
background substances in wastewater treatment just like 1O2. While Fe 
(IV) = O species also shows unfavorable mineralization ability although 
its oxidation potential is relatively higher (E0(FeIV = O2+, H+/ 
FeIIIOH2+) ≥ 1.95 V, E0(FeIV = O2+/FeIIIO+) > 1.3 V) [77,132]. 

Overall, in Fe-based Fenton-like systems, the selective degradation of 
organic pollutants can be achieved by regulating the existing form of 
•OH, or generation of Fe(IV) = O/Fe(V) = O, •O2

–, and 1O2 according to 
the chemical properties of organic pollutants. To achieve this, it is sig-
nificant to identify the reactive species during reactions, and many ap-
proaches have been proposed [61,104,133]. For example, electron 
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paramagnetic resonance (EPR) technology has been widely employed to 
detect •OH and •O2

– by using a spin trap 5,5-dimethyl-1-pyrroline-N- 
oxide (DMPO) [26,79], and 1O2 by using a spin trap 4-oxo-2,2,6,6-tetra-
methylpiperidine (TEMP) [120]. The appearance of DMPO-•OH, DMPO- 
•O2

–, and TEMP-1O2 signal verifies the existence of •OH, •O2
–, and 1O2, 

respectively. Apart from that, some other strategies including spectro-
photometry, fluorescence, high performance liquid chromatography 
(HPLC), gas chromatography-mass spectrum (GC–MS) and chem-
iluminescence methods are also commonly used for reactive species 
detection [106,133–135]. As for spectrophotometry, fluorescence, HPLC 
and GC–MS methods, a suitable probe compound is generally utilized to 
react with a certain reactive species, and the presence of such reactive 
species is reflected by the production of corresponding adduct, which 
can be detected though a separate detection step. For chem-
iluminescence method, light will be immediately emitted when a 
chemiluminescence probe is mixed with a certain reactive species, 
therefore verifying the existence of the reactive species. The commonly 
used probe compounds in these strategies have been summarized in 
Table 1. In addition to the detection of reactive species, the contribution 
of one reactive species during catalytic reaction can also be distin-
guished by suppressing the role of this reactive species with corre-
sponding quenching agents. However, some drawbacks of such method 
still exist, such as the interference of other reactive species, and changes 
of reaction mechanisms caused by high concentration of quenching 
agents [136–138]. The detailed information is summarized in Table 2. In 
this case, probe approach is proposed as an alternative to investigate the 
role of reactive species [61,115]. During such process, the concentration 
of reactive species can be reflected by measuring the concentration of 
corresponding products between reactive species and probes. On the 
basis of the measured reactive species concentration and chemical ki-
netic models, the relative contribution of reactive species to pollutants 
degradation can be possibly estimated. 

Table 1 
The commonly used methods and probes for reaction species detection.  

Reactive 
species 

Detection methods Probe Reference 

•OH EPR DMPO [120] 
Spectrophotometry DMSO [133] 
Fluorescence Coumarin [139] 
Chemiluminescence Phthalhydrazide [134] 
HPLC Salicylic acid [140] 

Benzoic acid [141] 
•O2

– EPR DMPO [79] 
Spectrophotometry Nitrotetrazolium blue chloride 

(NBT) 
[115] 

Fluorescence 4-Chloro-7-nitro-1,2,3- 
benzoxadiazole (NBD-Cl) 

[135] 

Diketopyrrolopyrrole derivates [142] 
Chemiluminescence 5-amino-2,3-dihydroxy-1,4- 

Phthalazinedione  
(luminol) 

[134] 

Methoxy cypridina luciferin 
analog (MCLA) 

[143] 

1O2 EPR TEMP [121] 
Spectrophotometry 9,10-diphenylanthracene (DPA) [144] 

1,3-diphenylisobenzofuran 
(DPBF) 

[120] 

Fluorescence 9-[2-(3-carboxy-9,10-dimethyl) 
anthryl]-6-hydroxy-3H-xanthen- 
3-one (DMAX) 

[145] 

Chemiluminescence Tetrathiafulvalenem 
(TTF) 
-substituted anthracene probe 

[146] 

HPLC FFA [147] 
Metronidazole (MDE) [138] 

Fe(IV) =
O/ 
Fe(V) =
O 

HPLC PMSO [129] 
GC–MS DMSO [130]  

Table 2 
The summary of commonly used quenching methods for •OH, •O2

− , 1O2 and Fe 
(IV) = O/Fe(V) = O.  

Reactive 
species 

Detection method Drawbacks Reference 

•OH Alcohols (i.e., tert-butanol, 
isopropanol, n-propanol, 
methanol, and ethanol) 

(1) The reaction 
between alcohols and 
•OH will resulting the 
re-formation of H2O2 in 
the presence of 
molecular oxygen, the 
order is decreased as 
methanol > ethanol >
isopropanol > n- 
propanol > tert-butanol; 
(2) Alcohols may 
scavenge •OH bound to 
surface or in the bulk 
solution depending on 
their affinity to catalyst 
surface, while the 
interaction of each 
alcohol and a certain 
catalyst surface are 
different, making it 
difficult to generalize. 

[104,136] 

KI KI is usually employed 
as scavengers of 
surface-bound •OH, 
while the reaction 
between KI and Fe or KI 
and H2O2 may interfere 
with the quenching 
result. 

[61] 

•O2
– Benzoquinone (BQ) (1) BQ has low 

solubility in water, 
which cannot 
completely quench the 
•O2

–; 
(2) •OH is quite active 
for attacking BQ and 
therefore have an 
impact on the 
quenching results. 

[111,138] 

2,2,6,6- 
tetramethylpiperidine 
(TEMPOL) 

TEMPOL can also react 
with •OH and exhibits 
catalase activity, which 
could lead to an 
inaccurate quenching 
effect. 

[148] 

Chloroform (1) CHCl3 has low 
solubility in water, 
which could affect its 
quenching effect on 
•O2

–; 
(2) The volatilization of 
CHCl3 will significantly 
complicate the 
calculation of •O2

– 

exposure. 

[61,115] 

Superoxide dismutase (SOD) The inhibition 
mechanism of SOD 
towards •O2

– will lead to 
radical •OH generation. 

[149] 

1O2 Furfuryl alcohol (FFA) FFA is also highly 
reactive toward •OH. 
Therefore, failure to 
add a •OH quencher 
when quenching 1O2 

would result in an 
overestimation of 1O2 

concentration. 

[138] 

Sodium azide (NaN3) (1) NaN3 is a reducing 
agent. In addition to 
quenching 1O2, it can 
also react with some 
oxidants such as H2O2. 

[61,150] 

(continued on next page) 
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4. Conclusions and perspectives 

Heterogeneous Fenton-like processes have been extensively studied 
over the past few years. During such processes, organic pollutants will 
react with the generated reactive species and then being decomposed. 
Therefore, a firm understanding of the fundamentals of the reactive 
species generation and utilization is significant for improving Fenton- 
like performance. 

In this review, the mechanisms of H2O2 decomposition at surface Fe 
sites (Fe0, Fe(II), and Fe(III)), oxygen vacancies, as well as electron- 
polarized micro-areas have been briefly discussed with specific atten-
tion to reactive species (i.e., Fe(IV) = O/Fe(V) = O, •OH, •O2

– and 1O2) 
production. Nevertheless, it remains challenging to elucidate the 
detailed processes of reactive species generation. For example, a unified 
and clear reaction mechanism for inducing peroxide O–O bond het-
erolysis in Fe(II)–H2O2 complex to produce Fe(IV) = O is still lacking. 
Therefore, a more precise elucidation of the interaction between H2O2 
and the active site is still needed, which can be achieved by combining 
multiple methods, such as in-situ EPR, XAFS, and DFT to further 
determine key information about the activation mechanism, including 
variation of electron density, coordination configuration, bond forma-
tion, bond length, H2O2 dissociated energy barrier, etc. 

Besides, although the selective degradation processes can be ach-
ieved through regulating the generation of a certain reactive species, it is 
still challenging to balance the selective degradation and mineralization 
rates, because the intermediate products generated after the target 
pollutants being selectively attacked may not be further degraded. The 
simultaneous existence of reactive species with lower oxidation poten-
tial but high selectivity to target organic pollutants, and •OH with high 
oxidation potential but low selectivity may be beneficial for achieving a 
high mineralization rate in complex aqueous substrates, which is a 
sought research direction for future study. 

Meanwhile, as discussed before, the contribution of a certain reactive 

species is usually obtained through quenching experiments in current 
study. However, the complications and uncertainties arising from the 
consumption of scavengers by multiple reactive species, and unexpected 
reactions (i.e., re-formation of H2O2 and •OH) triggered by high con-
centration of quenching agents may mislead the quenching results. 
Other means, such as combining probe-based kinetic models, are sug-
gested when applying the quenching experiments to interpret the role of 
reactive species to assure the reliability of results. 
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