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Nowadays there is a continuously increasing worldwide concern for the development of wastewater treat-
ment technologies. The utilization of iron oxide nanomaterials has received much attention due to their
unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, ex-
cellent magnetic properties and great biocompatibility. A range of environmental clean-up technologies have
been proposed in wastewater treatment which applied iron oxide nanomaterials as nanosorbents and photo-
catalysts. Moreover, iron oxide based immobilization technology for enhanced removal efficiency tends to be
an innovative research point. This review outlined the latest applications of iron oxide nanomaterials in
wastewater treatment, and gaps which limited their large-scale field applications. The outlook for potential
applications and further challenges, as well as the likely fate of nanomaterials discharged to the environment
were discussed.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

The spread of a wide range of contaminants in surface water and
groundwater has become a critical issue worldwide, due to popula-
tion growth, rapid development of industrialization and long-term
droughts (Cundy et al., 2008; Chong et al., 2010; Zeng et al., 2011).
tal Science and Engineering,
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It is thus of necessity to control the harmful effects of contaminants
and improve the human living environment. Contaminants persisting
in wastewater include heavy metals, inorganic compounds, organic
pollutants, and many other complex compounds (O'Connor, 1996;
Fatta et al., 2011; Li et al., 2011). All of these contaminants releasing
into the environment through wastewater are harmful to human be-
ings and ecological environment. Consequently, the need for contam-
inants removal has become a must (Jiang et al., 2006; Huang et al.,
2010; Pang et al., 2011a).

In an effort to combat the problem of water pollution, rapid and
significant progresses in wastewater treatment have been made, in-
cluding photocatalytic oxidation, adsorption/separation processing
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and bioremediation (Huang et al., 2006a; Zelmanov and Semiat,
2008; Long et al., 2011; Pang et al., 2011a, 2011b). However, their
applications have been restricted by many factors, such as processing
efficiency, operational method, energy requirements, and economic
benefit. Recently, nanomaterials (NMs) have been suggested as effi-
cient, cost-effective and environmental friendly alternative to existing
treatment materials, from the standpoints of both resource conserva-
tion and environmental remediation (Friedrich et al., 1998; Dimitrov,
2006; Dastjerdi and Montazer, 2010).

Nanotechnology holds out the promise of immense improve-
ments in manufacturing technologies, electronics, telecommunica-
tions, health and even environmental remediation (Gross, 2001;
Kim et al., 2005; Moore, 2006). It involves the production and utiliza-
tion of a diverse array of NMs, which include structures and devices
with the size ranging from 1 to 100 nm and displays unique proper-
ties not found in bulk-sized materials (Stone et al., 2010; Wang et al.,
2010). Several kinds of nanomaterials, such as carbon-based NMs
(Mauter and Elimelech, 2008; Upadhyayula et al., 2009) and TiO2

NMs (Khan et al., 2002; Shankar et al., 2009), have been widely stud-
ied and extensively reviewed. However, iron oxide-based NMs need
to be studied in greater detail.

This review evaluates the important properties of iron oxide NMs.
It highlights not only recent developments in the application of iron
oxide NMs for wastewater treatment, but also gaps which limited
their large-scale field application. Primary attention is given to recent
development in the utilization of iron oxide NMs as nanosorbents,
followed by critical discussion on their application as photocatalysts.
Furthermore, the practical potential of iron oxide based immobiliza-
tion technology for improving pollutant removal efficiency is elabo-
rated. The likely fate of NMs discharged in the environment and
associated remediation method are also discussed. A detailed descrip-
tion of synthesis method, properties and characterization of iron
oxide NMs is beyond the scope of this article, but can be found in
Laurent et al. (2008) and Teja and Koh (2009). The structure of this
review is illustrated in Fig. 1.

2. Iron oxide nanomaterials

Iron oxides exist in many forms in nature. Magnetite (Fe3O4),
maghemite (γ-Fe2O3), and hematite (α-Fe2O3) are the most common
Fig. 1. Overview of the
forms (Cornel and Schwertmann, 1996; Chan and Ellis, 2004). In re-
cent years, the synthesis and utilization of iron oxide NMs with
novel properties and functions have been widely studied, due to
their size in nano-range, high surface area to volume ratios and
superparamagnetism (McHenry and Laughlin, 2000; Afkhami et al.,
2010; Pan et al., 2010). Particularly, the easy synthesis, coating or
modification, and the ability to control or manipulate matter on an
atomic scale could provide unparalleled versatility (Boyer et al.,
2010; Dias et al., 2011). Additionally, iron oxide NMs with low toxic-
ity, chemical inertness and biocompatibility show a tremendous
potential in combination with biotechnology (Huang et al., 2003;
Roco, 2003; Gupta and Gupta, 2005). The unique properties, which
account for the application of iron oxide NMs as well as the consider-
able differences among iron oxide bulk materials, were presented in
Fig. 2 (Bystrzejewski et al., 2009; Selvan et al., 2010).

It is reported that preparation methods and surface coating me-
diums play a key role in determining the size distribution, morpholo-
gy, magnetic properties and surface chemistry of nanomaterials
(Jeong et al., 2007; Machala et al., 2007). Many researchers have
been focusing their efforts on developing chemical and physical
methods for the synthesis of MNPs (Dias et al., 2011). Recently, a va-
riety of synthesis approaches have been developed to produce high
quality nanoparticles (Hassanjani et al., 2011), nano-ovals (Zhong
and Cao, 2010), nanobelts (Fan et al., 2011) and nanorings (Gotić
et al., 2011) or other nanostructures. Fig. 3 presents the three most
important published routes for the synthesis of superparamagnetism
iron oxide nanoparticles (SPIONs), summarized by Mahmoudi et al.
(2011). Advances in NMs synthesis enable the precise control of
surface active sites by manufacturing monodisperse and shape-
controlled iron oxide NMs (Bautista et al., 2005; Li and Somorjai,
2010). Some emerging methods, such as fungi/proteins mediated
biological method and sonochemical method, necessitate wide de-
velopment. Future studies should aim to address different challenges
to provide new efficient and specific magnetic NMs. In addition, the
development of iron oxide NMs into a field scale may provide a pro-
ductive area of research, andmore research is required to explore the
application potential of these novel NMs.

Generally, nanomaterials should be stable to avoid aggregation
and endow a low deposition rate, in order to assure their reactivity
and mobility (Schrick et al., 2004; Kanel et al., 2007; Tiraferri et al.,
review structure.



Fig. 2. Important properties of iron oxide magnetic nanoparticles for wastewater treatment applications.

Fig. 3. A comparison of published work (up to date) on the synthesis of SPIONs by three different routes.
Sources: Institute of Scientific Information. (Adopted from (Mahmoudi et al., 2011)).
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2008). However, it is reported that NMs tend to aggregate in solution
(Lin et al., 2005). Commonly, the stability of colloidal nanoparticles
is influenced by the electrostatic and van der Waals interactions
(Chen et al., 2007). Much work is still needed to advance knowledge
in the enhancement of NMs stability, by reducing their surface energy
which limits their large-scale application. One attractive potential
approach is the modification of NMs, based on the fact that iron
oxide NMs could react with different functional groups. The use of
stabilizer, electrostatic surfactant, and steric polymers has been wide-
ly proposed for facilitating NMs with non-specific moieties, group
specific, or highly specific ligands (Hyeon et al., 2001; Harris et al.,
2003; Batalha et al., 2010; Sung et al., 2012).

The stability of iron oxide colloid suspensions could be greatly
augmented by surface modification with suitable functional groups,
such as phosphonic acids, carboxylic acid, and amine (Fig. 4) (Boyer
et al., 2010; Dias et al., 2011). Since the practical application depends
on the type of modified medium, it would be critical to functionalize
with various mediums (Mohanraj and Chen, 2007). A series of me-
diums can be tuned to introduce various functional groups to iron
oxide NMs, but a robust protocol to achieve this has yet to be developed
and demonstrated. Nanomaterials that are sterically stabilized tend to
remain well-dispersed even in industrial application (Tiraferri et al.,
2008). It should be noted that the application of iron oxide NMs are
strongly related to their intrinsic properties, which highly depend on
the preparation method and modification mediums (Machala et al.,
2007; Girginova et al., 2010).

3. Iron oxide nanomaterials in wastewater treatment

Selection of the best method and material for wastewater treat-
ment is a highly complex task, which should consider a number of
factors, such as the quality standards to be met and the efficiency
as well as the cost (Huang et al., 2008; Oller et al., 2011). Therefore,
the following four conditions must be considered in the decision on
wastewater treatment technologies: (1) treatment flexibility and
final efficiency, (2) reuse of treatment agents, (3) environmental secu-
rity and friendliness, and (4) low cost (Zhang and Fang, 2010; Oller
et al., 2011).

Magnetism is a unique physical property that independently
helps in water purification by influencing the physical properties of
contaminants in water. Adsorption procedure combined with mag-
netic separation has therefore been used extensively in water treat-
ment and environmental cleanup (Ambashta and Sillanpää, 2010;
Fig. 4. Common chemical moieties for the anchoring of polymers and functional groups a
Mahdavian and Mirrahimi, 2010). Iron oxide NMs are promising for
industrial scale wastewater treatment, due to their low cost, strong
adsorption capacity, easy separation and enhanced stability (Hu et al.,
2005; Carabante et al., 2009; Fan et al., 2012). The ability of iron oxide
NMs to remove contaminants has been demonstrated at both labora-
tory and field scale tests (White et al., 2009; Girginova et al., 2010).
Current applications of iron oxide NMs in contaminated water treat-
ment can be divided into two groups: (a) technologies which
use iron oxide NMs as a kind of nanosorbent or immobilization carrier
for removal efficiency enhancement (referred to here as adsorptive/
immobilization technologies), and (b) those which use iron oxide
NMs as photocatalysts to break down or to convert contaminants into
a less toxic form (i.e. photocatalytic technologies). However, it should
be noted that many technologies may utilize both processes.

3.1. Adsorptive technologies

3.1.1. Iron oxide NMs as nanosorbents for heavy metals
Heavy metal contamination is of great concern because of its toxic

effect on plants, animals and human beings, and its tendency for bioac-
cumulation even at relatively low concentration. Therefore, effective
removal methods for heavy metal ions are extremely urgent and have
attracted considerable research and practical interests (Huang et al.,
2006a; Chen et al., 2011; Pang et al., 2011c).

Nowadays, the majority of bench-scale research and field applica-
tions of materials for wastewater treatment has focused on magnetic
NMs (Iram et al., 2010), carbon nanotubes (Stafiej and Pyrzynska,
2007), activated carbon (Kobya et al., 2005), and zero-valent iron
(Ponder et al., 2000). Among these, it seems that iron oxide magnetic
NMs, possessing the capability to treat large volume of wastewater and
being convenient for magnetic separation, are most promising mate-
rials for heavy metal treatment (Hu et al., 2010). The iron oxide NMs
could illustrate excellent superiority. In a study performed by Nassar
(2010), it was found that the maximum adsorption capacity for Pb(II)
ions was 36.0 mg g−1 by Fe3O4 nanoparticles, which was much higher
than that of reported low cost adsorbents. The small size of Fe3O4

nanosorbents was favorable for the diffusion of metal ions from solu-
tion onto the active sites of the adsorbents surface. It recommended
that Fe3O4 nanosorbents were effective and economical adsorbents
for rapid removal and recovery of metal ions from wastewater
effluents.

However, as one of the most important surface-driven phenom-
ena in aquatic environments, aggregation caused by high surface
t the surface of iron oxide magnetic nanoparticles (Adopted from (Dias et al., 2011)).

image of Fig.�4
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area to volume ratios of NMs could control a number of important
environmental processes, including ion uptake (Baalousha, 2009).
In addition to aggregation, numerous interactions occurred in waste-
water also affect the adsorption of metals. For example, phosphates
can be well adsorbed and can out-compete metals for adsorption
sites due to their high concentrations in wastewater (Feng et al.,
2010). Therefore, the above mentioned factors as well as the types
of contaminants may limit the effectiveness of nanosorbents, and
the exploration of highly effective modification methods for NMs
tends to be a hot research field for enhancing the efficiency of nano-
sorbents. Surface modification, which can be achieved by the attach-
ment of inorganic shells and/or organic molecules, not only stabilizes
the nanoparticles and eventually prevents their oxidation, but also
provides specific functionalities that can be selective for ion uptake
and thus enhance the capacity for heavy metal uptake in water
treatment procedures. Several types of functionalized materials
have been utilized by grafting of chelating ligands on the surface of
NMs for heavy metal removal (Ambashta and Sillanpää, 2010;
Girginova et al., 2010). For example, Bystrzejewski et al. (2009) ap-
plied carbon-encapsulated magnetic nanoparticles to remove Cu2+

and Cd2+. In their study, the ion uptakes achieved 95% for cadmium
and copper, which were considerably higher than the capacities of
activated carbons, confirming the prospect of modified iron oxide
NMs for efficient heavy metal removal from aqueous solutions.

Mechanisms of contaminant adsorption from wastewater by modi-
fied iron oxide NMs include surface sites binding (Hu et al., 2010), mag-
netic selective adsorption (Ozmen et al., 2010), electrostatic interaction
(Zhong et al., 2006), and modified ligands combination (Hao et al.,
2010). The addition of novel modificationmediums to NMs can achieve
high efficiency. For example, a novel magnetic nanosorbent (MNP–
NH2) has been developed by the covalent binding of 1,6-hexadiamine
on the surface of Fe3O4 nanoparticles for the removal of Cu2+ ions
from aqueous solution (Hao et al., 2010). The chemisorptions occurred
between Cu2+ andNH2 groups on the surface ofMNP–NH2, as shown in
Eq. (1). In addition, the prepared nanosorbents had good reusability and
stability, and the adsorption capacity of MNP–NH2 was kept constant
(about 25 mg g−1). This further confirmed their application potential,
not only considering removal efficiency, but also taking into account
the practical application.

MNP–MH2 þ Cu
2þ→MNP–NH2Cu

2þ ð1Þ

Laboratory studies indicated that iron oxide NMs could effectively
remove a range of heavy metals, including Pb2+, Hg2+, Cd2+, Cu2+

et al. A list of functionalized iron oxide NMswith their sorption capac-
ity values was summarized in Table 1. However, iron oxide-based
technology for heavy metal adsorption is still at a relatively early
Table 1
Functionalized iron oxide magnetic nanomaterials in heavy metal adsorption.

Nanosorbents Ligands Heavy metals Adsorption cap

Mesostructured silica magnetite –NH2 Cu(II) The adsorbent
Magnetic iron–nickel oxide – Cr(VI) The prepared

uptake capabil
Montmorillonite-supported MNPs –AlO; –SiO Cr(VI) The adsorption
PEI-coated Fe3O4 MNPs –NH2 Cr(VI) The maximum
δ-FeOOH-coated γ-Fe2O3 MNPs – Cr(VI) The Cr(VI) ads
Flower-like iron oxides – As(V), Cr(VI) The As(V) ads
Hydrous iron oxide MNPs – As(V), Cr(VI) 8 mg of arseni
Fe3O4–silica Si–OH Pb(II), Hg(II) The removal ef

respectively.
Amino-modified Fe3O4 MNPs –NH2 Cu(II), Cr(VI) The maximum

ions and 11.24
m-PAA-Na-coated MNPs –COO Cu(II), Pb(II) et al. Adsorption cap

Ni(II) (27.0 mg
Poly-L-cysteine coated Fe2O3 MNPs –Si–O; –NH2 Ni(II), Pb(II) et al. The recovery o

even the remo
stage for wide application. It is recognized that much work is needed
to advance knowledge in the area of NMs, and the transfer of iron
oxide NMs from laboratory to field-scale application involves many
complexities. With increasing trends in contaminant removal treat-
ment, more data of NMs will become available on performance and
cost, which can provide additional information for large-scale indus-
trial application (Otto et al., 2008).

3.1.2. Iron oxide NMs as nanosorbents for organic contaminants
As a well-known separation process, adsorption has been widely

applied to remove chemical pollutants fromwater. It has numerous ad-
vantages in terms of cost, flexibility and simplicity of design/operation,
and insensitivity to toxic pollutants (Zeng et al., 2007; Ahmad et al.,
2009; Rafatullah et al., 2010). Therefore, an effective and low-cost ad-
sorbent with high adsorption capacity for organic pollutants removal
is desirable. Iron oxide NMs are currently being explored for organic
contaminant adsorption, particularly for the efficient treatment of
large-volumewater samples and fast separation via employing a strong
external magnetic field. A lot of experiments have been undertaken to
examine the removal efficiency of organic pollutants by using iron
oxide NMs for organic pollutants (Zhang et al., 2010; Zhao et al., 2010;
Luo et al., 2011). For example, Fe3O4 hollow nanospheres were shown
to be an effective sorbent for red dye (with the maximum adsorption
capacity of 90 mg g−1) (Iram et al., 2010). The saturation magnetiza-
tion of prepared nanospheres was observed to be 42 emu g−1, which
was sufficient for magnetic separation with a magnet (critical value at
16.3 emu g−1) (Ma et al., 2005). These proved thatmagnetic NMs tech-
nology was a novel, promising and desirable alternative for organic
contaminant adsorption.

Similar to heavy metal adsorption, the adsorption of organic con-
taminants took place via surface exchange reactions until the surface
functional sites are fully occupied, and thereafter contaminants could
diffuse into adsorbent for further interactions with functional groups
(Ma et al., 2005; Zhao et al., 2010; Hu et al., 2011). Based on this
mechanism, the development of NMs for organic contaminant re-
moval requires an extension of surface modification. The modification
and chemical treatment of NMs are essential to enhance the target
adsorption capability. One example in this area is the use of carbon
coated Fe3O4 nanoparticles (Fe3O4/C) to extract trace PAHs (Zhang
et al., 2010). The recoveries of experimental PAHs on Fe3O4/C nano-
sorbents were significantly increased compared with those pure
Fe3O4 nanoparticles, and the removal efficiencies of target compounds
were above 90% for PhA, FluA, Pyr, BaA, and BbF, as shown in Fig. 5. In
addition, through this method, the presence of carboxyl and hydroxyl
groups could modify Fe3O4/C nanoparticles with hydrophilic surface.
The modified nanoparticles can then not only be dispersed stably in
solution for practical applications, but also decrease the irreversible
acity Reference

s showed a capacity of 0.5 mmol/g for Cu(II). (Kim et al., 2003)
adsorbent showed a maximum of 30 mg/g
ity for Cr(VI).

(Wei et al., 2009)

capacity was 15.3 mg/g for Cr(VI). (Yuan et al., 2009)
adsorption capacity for Cr(VI) was 83.3 mg/g. (Pang et al., 2011b)
orption capacity determined to be 25.8 mg/g. (Hu et al., 2007)
orption capacity was 5.3 mg/g. (Li and Zhang, 2006)
c per g of adsorbent. (Pradeep, 2009)
ficiencywas 97.34% and 90% for Pb(II) andHg(II), (Ambashta and Sillanpää, 2010)

adsorption capacity was 12.43 mg/g for Cu(II)
mg/g for Cr(VI) ions, respectively.

(Huang and Chen, 2009)

acity: Cd(II) (5.0 mg g−1); Pb(II) (40.0 mg g−1);
g−1) and Cu(II) (30.0 mg g−1).

(Mahdavian and Mirrahimi, 2010)

f the tested metals were almost all above 50%,
val efficiency of Ni(II) reached 89%.

(White et al., 2009)
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adsorption of analytes to overcome the desorption problem of carbon
materials.

In summary, combination of the superior adsorption performance
and magnetic properties of iron oxide NMs tend to be a promising ap-
proach to deal with a variety of environmental problems. Advances in
iron oxide NMs could provide opportunities for developing next-
generation adsorption systems with high capacity, easy separation,
and extended lifecycles. The novel physical, chemical and magnetic
properties of iron oxide NMs can facilitate many advanced applications
in the development of adsorptive technologies, and thus generate more
efficient and cost-effective remediation approaches as compared with
conventional technologies (Babel and Kurniawan, 2003; Cundy et al.,
2008; Brar et al., 2010).

3.2. Photocatalytic technology

Photocatalysis, one of the advanced physico-chemical technology
applicable in photodegradation of organic pollutants (Akhavan and
Azimirad, 2009), has attracted much attention in recent years. How-
ever, some obstacles hinder the wide application of iron oxide NMs
for the photocatalysis of toxic compounds: (a) the separation of ma-
terials after the treatment process tends to be expensive owing to
manpower, time and chemicals used for precipitation followed by
centrifugation or decantation at the end of treatment process, and
(b) the low quantum-yield of treatment process restricts the kinetics
and efficiency (Bandara et al., 2007). These limitations should be
taken into account for the development of NMs based technologies.
Considerable efforts have beenmade to enhance photocatalytic activity,
such as decreasing photocatalyst size to increase surface area, combin-
ing photocatalyst with some novel metal nanoparticles, and increasing
hole concentration through doping (Zhang and Fang, 2010). On the
other hand, improved charge separation and inhibition of charge car-
rier recombination are essential in improving the overall quantum
efficiency for interfacial charge transfer (Beydoun et al., 1999; Watson
et al., 2002; Hu et al., 2009).

Iron oxide NM can be a good photocatalyst absorbing visible light.
Compared with commonly applied TiO2, which mainly absorbs UV
light with wavelengths of b380 nm (covering only 5% of the solar
spectrum) due to its wide band-gap of 3.2 eV, Fe2O3 with band-gap
of 2.2 eV (Akhavan and Azimirad, 2009) is an interesting n-type semi-
conducting material and a suitable candidate for photodegradation
under visible light condition. The better photocatalytic performance
of iron oxide NMs than TiO2 can be attributed to considerable
Fig. 5. Removal efficiencies of PAHs by Fe3O4 and Fe3O4/C nanosorbents (Adopted
from (Zhang et al., 2010)).
generation of electron–hole pairs through the narrow band-gap illu-
mination (Eq. (2)) (Bandara et al., 2007).

Fe2O3 þ hv→Fe2O3ðe−cb; hþvbÞ ð2Þ

Many species of Fe(III) oxides have been proposed, such asα-Fe2O3,
γ-Fe2O3, α-FeOOH, β-FeOOH and γ-FeOOH, to degrade organic pollut-
ants and reduce their toxicity due to enhanced photocatalysis effect
(Wuet al., 2000). TheseNMs are illustrative of a newway tomanipulate
the catalytic properties of iron oxide for photocatalysis, towards a safe
and effective wastewater treatment nanotechnology. An example is
the photodegradation of Congo red (CR) dye (C32H24N6O6S2) by iron
oxide nanoparticles which were synthesized by thermal evaporation
and co-precipitation approach (Khedr et al., 2009). The maximum re-
moval efficiency was 96% at a size of 100 nm. Further, irradiation was
found to have no pronounced effect on the catalytic decomposition ca-
pacity, but the rate of degradation was fast in the presence of light.

Iron oxide NMs have been widely applied as photocatalysts, but
their activity decline is frequently encountered because of the elec-
tron–hole charge recombination on the oxide surface, as fast as with-
in nanoseconds (Rothenberger et al., 1985). Deposition of a noble
metal on a metal oxide support can be employed to address this
problem. For example, gold/iron oxide aerogels were used as photo-
catalysts to degrade disperse Blue 79 azo dye in water under ultravi-
olet light illumination (Wang, 2007). In the photocatalysis system,
metallic gold particles, which were considered to function as the
sites for electron accumulation under UV light irradiation, could facili-
tate the transfer of surface electrons. The better separation between
electrons and holes would allow a better efficiency for oxidation and
reduction reactions (Liu et al., 2004), thus enhancing the photocatalytic
activity. Meanwhile, hydroxyl radicals near the catalyst surface, acting
as the main oxidative species to attack dye molecules, were efficient
to improve dye degradation. The combination of metals with iron
oxide nanomaterials can increase the kinetics of oxidation–reduction
reaction, and tend to be an effective approach for photocatalytic im-
provement (Otto et al., 2008).

In addition, due to its narrow band-gap, Fe2O3 can be applied as a
sensitizer of TiO2 photocatalyst (Zhang and Lei, 2008; Akhavan and
Azimirad, 2009). Electrons in the valence bands of TiO2 are driven into
Fe2O3 due to formation of the built-in field in Fe2O3–TiO2 heterojunc-
tion. The charge transport between the valance bands of Fe2O3 and
TiO2 is regarded as an effective process to promote photocatalytic activ-
ity of the composition, since it results in an increase in the electron–hole
recombination time (Peng et al., 2010a; Shinde et al., 2011).

Recently, a novel photo-Fenton-like system has been set up with
the existence of iron oxides and oxalate (Lei et al., 2006). Iron oxides
were mainly acted as a photocatalyst, while oxalic acid could be excit-
ed to generate electron–hole pairs (Leland and Bard, 1987; Siffert and
Sulzberger, 1991). The heterogeneous iron oxide–oxalate system
could exhibit a strong ligand-to-metal charge transformation ability
as described below (Lei et al., 2006):

Firstly, oxalic acid can be adsorbed by iron oxide particles to form
iron oxide–oxalate complexes including [FeIII(C2O4)n](2n−3)− or
[FeII(C2O4)n-1]4−2n on the surface in solution, which are much more
photoactive than other Fe3+ species, with the generation of oxalate
radical C2O4

•−.

Iron oxideþ nH2C2O4↔½≡FeðC2O4Þn�ð2n�3Þ− ð3Þ

½≡FeðC2O4Þn�ð2n�3Þ− þ hv→FeðC2O4Þ2−2 orð≡FeðC2O4Þ2−2 Þ þ CO2•
− ð4Þ

½FeIIIðC2O4Þn�ð2n�3Þ− þ hv→½FeIIðC2O4Þn�1�4�2n þ C2O4•
− ð5Þ

image of Fig.�5
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Then, a rapid de-carboxylation is followed. Oxalate radical is
transferred into carbon-centered radicalCO2

•−, then further trans-
formed into superoxide ion (O2

•−).

C2O4•
−→CO2 þ CO2•

− ð6Þ

C2O4•
− þ O2→CO2 þ O2•

− ð7Þ

Finally, O2
•− produces H2O2 and O2 by disproportion. •OH, generated

in their redox–oxidize transformation process accompanied with the
production and consumption of H2O2, as described below, plays a key
role in the photodegradation process.

Fe
3þ þ O2•

−→•Fe
2þ þ O2 ð8Þ

O2•
− þ nH

þ þ Fe
2þ→Fe

3þ þ H2O2 ð9Þ

Fe
2þ þ H2O2→Fe

3þ þ OH
− þ •OH ð10Þ

According to above equations, photolysis of Fe(III)–oxalate com-
plexes forms H2O2, Fe3+ could result in the radical chain mechanism
described above, and the Fenton reaction (Eq. (10)) is enhanced by
the participation of Fe2+. Therefore, the photochemical reduction of
Fe(III)-complex will be coupled to a Fenton reaction, with the produc-
tion of oxidative species such as superoxide (O2

•−), hydroperoxyl
(H2O2) and OH radicals (Quici et al., 2005) by utilizing natural mate-
rials (iron oxides and oxalic acid) to produce •OH without external
H2O2 and artificial injection of iron (Faust and Zepp, 1993). In short,
photo-Fenton-like system can provide a promising and effective meth-
od for photocatalysis of organic pollutants, possessing great application
potential. It is also important to not only enhance the photocatalyst
ability but justify the combination of iron oxide NMs with microbes
(or other organisms) secreting oxalic acid or other organic acids on
the basis of photocatalyst, therefore expanding the application of
iron oxide NMs in removal of organic contaminants.

3.3. Immobilization carriers

Iron oxide NMs have also shown considerable potential in the
immobilization of biomass. The biosorption capacity of a variety of
macro andmicrobial biomass has been widely used to remove various
pollutants. NMs can offer larger surface areas and multiple sites for
interaction or adsorption (Paljevac et al., 2007). In particular, due to
the advantage of chemical inertness and favorable biocompatibility,
iron oxide NMs have been widely used in immobilization technology
(Huang et al., 2003; Sulek et al., 2010).

A great deal of efforts has been made by various researchers
(Jolivalt et al., 2000; Jiang et al., 2005; Huang et al., 2006b) to develop
effective immobilization technology. Immobilization of biomass onto
a more rigid and open support has been extensively studied for fungi
and microalgae (Li et al., 2010). In fact, immobilized cells have been
attracting great attention since the 1970s, mainly due to their dis-
tinct advantages over dispersed cells (McHale and McHale, 1994).
First of all, the immobilization of native biomass enhances physical
characteristics and offers a higher level of activity (Rodriguez, 2009).
In addition, resistance to environmental perturbations such as pH, tem-
perature and toxic chemical concentrations can be enhanced (Shin
et al., 2002). Moreover, immobilization is conducive to cyclic biomass
utilization, easier liquid–solid separation and minimal clogging in
continuous-flow systems. Such advantages could satisfy the engineer-
ing needs for application of immobilization technology.

Appropriate techniques must be combined to provide technically
sound and economically feasible options (Oller et al., 2011). Recently,
Saccharomyces cerevisiae immobilized on the surface of chitosan-
coated magnetic nanoparticles (SICCM) was applied as a novel mag-
netic adsorbent for the adsorption of Cu(II) from aqueous solution
(Peng et al., 2010b). In the study of Peng et al. (2010b), a series of
experiments were performed to examine the removal efficiency of
the prepared adsorbents. It was found that SICCM was quite efficient
as a magnetic adsorbent for the adsorption of Cu(II). The removal
efficiency reached over 90% within 20 min, and the maximum ad-
sorption capacity reached 134 mg g−1. Hopefully this kind of novel
adsorbent will have broad applications in the removal of heavy
metals from wastewater. It is thus reasonable to presume that immo-
bilization of biomass on suitable support is a precondition for the use
of biosorbents in large-scale processing. In addition, more studies
should be conducted to optimize the adsorbent, mainly by selecting
proper strains which have great adsorption ability to heavy metals
and organic compounds.

Although lots of immobilization mediums and methods have been
investigated, little information is available on combining iron oxide
nanotechnology with other biological technology for environmental
application, which may show a great application prospect by combin-
ing respective advantages of both NM and biomass. Thus it is of great
importance to study not only the large-scale application of adsorp-
tion method but also immobilization technology with high capacity
and stability. Future studies may need to draw the field of magnetic
NMs into biological applications such as nano-biosensors, cells/
proteins immobilization for magnetic separation and environmental
improvement. There is an emerging need for iron oxide NM immobi-
lization technology to be applied in environmental treatment. As a
result, it is of significance to select suitable biomass which possesses
favorable adsorption capacity and is well compatible with magnetic
NMs. In combined chemical and biological wastewater treatment, it
is also very important to keep in mind how the characteristics of
each individual treatment process can improve the destruction of a
persistent contaminant (Oller et al., 2011). In addition, commercial
issues such as scale up of the preparation of a biocatalyst or biosensor
by immobilization of enzymes or microbes have to be assessed in com-
petitionwith existingmaterials (Wang et al., 2008). It is anticipated that
the practical performance will increase significantly after combining
with biotechnology and iron oxide-based technology, and large-scale
field application will also expand to a great extent.

4. Iron oxide nanomaterials in environment

It is recognized that there are many potentially serious issues con-
cerning the environmental fate of engineered NMs and their potential
impacts on human health. Currently, there are very few information
on the background concentrations and physical–chemical forms of
NMs in the environment due to limitations in separation and analyt-
ical methodologies, although some laboratory based studies have
been carried out. However, such information is urgently required
and a major advance in knowledge would come through the develop-
ment of accurate and robust methodologies for the measurement of
NMs concentration and form in the environment (Ju-Nam and Lead,
2008). A definitive need exists to evaluate the effects that NMs may
have on the environment, yet little is known regarding interactions
of NMs with environmental matrices, either naturally or in the test
environment (Darlington et al., 2009).

First of all, it is imperative to identify the ecotoxicity of NMs in
aquatic systems, or focus on transport in a terrestrial environment
with an aim of prediction of NM behavior and evaluation of exposure
pathways. Nanomaterials, that are near commercialization and are
produced in large quantities, will enter the aquatic environment,
resulting in direct exposure to humans via skin contact, inhalation
of water aerosols and direct ingestion of contaminated drinking
water (Nel, 2006). Thus the study of toxicity and pathology is ex-
tremely important (Gatti and Rivasi, 2002). Since there is so little
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data available for the fate of discharged NMs, research is required to
test the behavior and particulate binding properties of manufactured
NMs with ecosystem and human beings. But it is noted that cells and
tissues have effective antioxidant defenses that deal with reactive
oxygen species generation by NMs (Bell, 2003). Throughout their
uptake and transport through the body, NMs will encounter a num-
ber of defenses that can eliminate, sequester, or dissolve NMs.

The unique characteristics of NMs will necessitate new test strat-
egies to delineate the novel mechanisms of injury that may arise
from these materials. Risk assessment is of key importance to the reg-
ulatory agencies that are responsible for formulating exposure and
safety guidelines (Nel, 2006). Predicting the physical behaviors and
biological toxicity of NMs is likely to be much more difficult than pre-
dicting those of conventional chemical pollutants, which is still often
a major problem (Bucheli and Gustafsso, 2000; Moore, 2006). A major
challenge for ecological risk identification will be the derivation of
toxicity thresholds for NMs, and determining whether or not current-
ly available biomarkers of harmful effect will also be effective for en-
vironmental nanotoxicity and nanopathology. It is therefore
necessary that effective risk assessment procedures are in place as
soon as possible to deal with potential hazards of NMs (Galloway et
al., 2002; Galloway et al., 2004; Moore, 2006). It is also important
for regulatory agencies to develop positive and negative benchmarks
that can be used as reference controls (Nel, 2006).

In general, the attention on this field is still not enough, and addi-
tional studies should be conducted to advance knowledge in the area
of safety and biocompatibility studies. In particular, for long-term
toxicity studies, the potential impacts on human and environmental
health should be essentially addressed. More refined methods for
NM characterization and toxicological evaluations will be emerging.
For example, some of specific nanosensors tend to be an available ap-
proach to detect ROS generation by nanoparticles. This could make
these evaluations cost effective, facilitating new product develop-
ment (Nel, 2006).

5. Conclusions

Wastewater treatment and reuse is a practice related not only to a
number of benefits in regards to water balances and management but
also to a number of question marks. Immediate research must be
launched towards this direction so as to safeguard human health
and environmental ecosystems. Nanomaterials, with unique physical
and chemical properties, have a tremendous potential for contami-
nants removal. To bring the NMs development a step forward, NMs
prioritization and further application prospect have been presented.
As a kind of effective photocatalysts, iron oxide NMs would display
their dominant superiority even at a source of visible light. In fact,
iron oxide NMs are efficient nanosorbents for heavy metals and or-
ganic pollutants. Employing iron oxide NMs to adsorb heavy metals
and organic pollutants are the most attractive and successful applica-
tions. While applications as immobilization carriers are only sparsely
addressed, the potential of utilization as support carriers, consisting
of biosensors and biosorbents, could not be ignored.

Although many cases of success in NMs were benefited from their
unique chemical and physical properties, the applications of NMs in
wastewater treatment are still limited in the early stage. As illustrated
in this review, a range of iron oxide-based technologies have been
proposed or are under active development for wastewater treatment,
but many techniques are still at an experimental or pilot stage. Poten-
tial difficulties may be encountered in application in vitro and in vivo
studies with iron oxide NMs. The field of iron oxide NMs (in a variety
of chemical and structural forms) has already exhibited its diversity
and potential applications in many frontiers of environmental area.

In conclusion, there is much recent interest in the use of engi-
neered iron oxide NMs as an in-situ, relatively non-invasive tool in
wastewater treatment. But it is noted that uncertainties over the
health impacts and environmental fate of these nanomaterials need
to be addressed before their widespread application. Increasingly,
study of their fate and impact in the environment is becoming impor-
tant due to the discharges already occurring to the environment. The
likely further increase in NMs discharges along with the dramatic in-
dustry growth, and the immense knowledge gaps in risk assessment
and management, would necessitate expanding studies in this area.
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