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e Provided a green chemistry strategy
for the biological production of
reduced graphene oxide (RGO) by
Geobacter.

o Bacterially induced RGO by Geobacter
exhibited a good performance in
electrochemical conductivity.

e The doping of nitrogen and phos-
phorus elements were observed in
the bacterially induced RGO by
Geobacter.

e Extracellular electron transfer at mi-
crobial cell/GO interface promoted
the graphene oxide (GO) reduction of
Geobacter.
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To explore a green, low-cost, and efficient strategy to synthesis reduced graphene oxide (RGO), the
process and mechanism of the graphene oxide (GO) reduction by a model electrochemically active
bacteria (EAB), Geobacter sulfurreducens PCA, were studied. In this work, up to 1.0 mg mL™" of GO was
reduced by G. sulfurreducens within 0.5—8 days. Ip/Ig ratio in reduced product was similar to chemically
RGO. After microbial reduction, the peak which corresponded to the reflection of graphene oxide (001)
disappeared, while another peak considered as graphite spacing (002) appeared. The peak intensity of
typical oxygen function groups, such as carboxyl C—0 and >0 (epoxide) groups, diminished in bacterially
induced RGO comparing to initial GO. Besides, we observed the doping of nitrogen and phosphorus
elements in bacterially induced RGO. In a good agreement with that, better electrochemical performance
was noticed after GO reduction. As confirmed with differential pulse voltammetry (DPV) and cyclic
voltammetry (CV) analysis, the maximum value of peak currents of bacterially induced RGO were
significantly higher than those of GO. Our results showed the electron transfer at microbial cell/GO
interface promoted the GO reduction, suggesting a broader application of EAB in biological mediated
production of RGO.
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1. Introduction

Due to its unique properties, graphene has been used in a wide
spectrum of applications such as energy-storage, catalysis and
sensors (Li et al., 2008b; Mohanty and Berry, 2008; Kauffmanab and
Star, 2010; Karim et al., 2013; Wei et al., 2015). However, common
chemical approaches employed to reduce graphene oxide (GO) to
graphene require high temperature and suitable reactors with
hazardous chemicals involved (Stankovich et al., 2007; Li et al,,
2008a; Wang et al., 2009, 2012; Zhou et al., 2009), which may
cause serious economic or environmental concerns (Wang et al.,
2011).

Microbial reduction of GO first explored by Salas et al. (2010) is
considered as a green chemistry approach to produce reduced
graphene oxide (RGO) (Bansal et al., 2015). Previous studies re-
ported that several bacterial groups were capable to perform GO
reduction, such as Escherichia coli (Gurunathan et al., 2013), She-
wanella (Salas et al., 2010), Gluconobacter roseus (Rathinam et al.,
2018), and other microbial species (Mokkapati et al., 2018;
Manasi. et al., 2018; Combarros et al., 2016; Bansal et al., 2015). The
known mechanism of microbial reduction of GO driven by meta-
bolically generated electrons can be largely divided into two
modes: i) direct electron transfer through direct contact of GO with
surface-associated proteins, and ii) indirect electron transfer via
self-secreted redox electron mediators by electrochemically active
bacteria (EAB) (Akhavan and Ghaderi, 2012; Zhao et al., 2018). For
example, Shewanella sp., an important model of EAB, was able to
reduce GO with the participation of self-secreted redox electron
mediators, e.g., electron shuttle(s) (Wang et al.,, 2011) and cyto-
chromes MtrCAB/OmcA/CymA (Salas et al., 2010; Jiao et al., 2011;
Wang et al., 2011). Shen et al. (2018) investigated two types of self-
assembled bio-rGO-hydrogels produced via GO reduction in the
presence of Shewanella sp. (S. xiamenensis, S. putrefaciens and
S. oneidensis). In their study, bio-rGO hydrogels and Shewanella
together showed a good performance on Congo red decolorization
and hexavalent chromium bioreduction, while sole Shewanella
could not fulfill.

Similar to Shewanella, Geobacter as another model EAB was able
to apply extracellular substance as electron acceptors and coupled
it to organic compounds oxidation (Logan, 2009; Liu et al., 2017).
Geobacter sulfurreducens were reported to utilize various extracel-
lular substances (e.g. Fe(Ill)) for respiration in order to obtain en-
ergy for growth (Lovley et al., 1993; Mahadevan et al., 2006), and
their mechanisms for extracellular electron transport could be
attributed to c-type cytochromes (c-Cyts) and nanowires as well as
the cell-secreted redox molecules (Okamoto et al., 2014; Kalathil
et al,, 2019). As reported, G.sulfurreducens PCA contained a large
number of genes coding for c-Cyts (111 in the whole genome)
(Busalmen et al., 2008; Kalathil et al., 2019), and the detected
electronic conductivity of its nanowires was ~5 mS cm~!, which
was equivalent to that of synthetic metal nanostructures
(Malvankar et al., 2011). Besides, Geobacter was considered to get
invovled in GO reduction. Kalathil et al. (2019) reported the oxygen
evolution reaction catalyst was derived from GO reduction by
Geobacter, and the hybrid catalyst (i.e., rGO/Geobacter) showed high
electrocatalytic activity. Besides, Chen et al. (2018) investigated GO
reduction in soil samples collected from a realgar tailing mine, in
which the abundance of Geobacter increased after the addition of
GO. However, the mechanism of GO reduction by Geobacter has not
been fully addressed.

Therefore, Geobacter as another model EAB with strong extra-
cellular electron transfer capability was selected to study its
mechanism for GO reduction in order to further expand our
knowledge of GO reduction via microbial route. Our results showed
an effective reduction of GO to RGO by G.sulfurreducens PCA, and

the bacterially induced RGO was further investegated by electro-
chemical test, transmission electron microscope (TEM), scanning
electron microscopy (SEM), fourier transform infrared spectroscopy
(FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction
(XRD), Raman and Ultraviolet—visible spectroscopy (UV—vis). In
the end, the putative mechanism of extracellular electron transfer
at G.sulfurreducens/GO interface was proposed.

2. Marterials and methods
2.1. Cultivation of G. sulfurreducens

G. sulfurreducens was obtained from the research group of Prof.
Hanqing Yu (University of Science & Technology of China).
G. sulfurreducens was grown in modified DMSZ medium with 20
mM acetate as electron donor and 50 mM fumarate as electron
acceptor at 30 °C (Li et al., 2014; Zhou et al., 2019). The medium in
sealed serum vial kept an anaerobic atmosphere by N»:CO, (4:1)
mixed gas. The growth curve was detected by optical density
measurement at 600 nm.

2.2. Biosynthesis of RGO

Single layer GO was purchased from XFNANO, INC, China.
100 mg of GO powder was dissolved in 50 mL sterile distilled water
by sonicating for 3 h, which was stored in 4 °C as main stock. 20 mM
acetate and calculated volume of the GO stock were added to the
bacterial medium as electron donor and acceptor, respectively, to
reach the final concentration of GO as 0.1, 0.2, 0.4, 0.6, 0.8,
1.0 mg mL~}, respectively. A 5% inoculum of strain PCA in expo-
nential growth phase (Fig. S1) was transferred into GO-amended
medium (20 mL) and all the cultures were statically cultivated in
the 30 °C incubator. Control treatment was set up in the GO-
amended medium without the addition of strain PCA. Sampling
tests were conducted on Day 9, when the GO reduction induced by
G. sulfurreducens PCA was observed for all GO treatments. RGO
which was produced in 0.6 mg mL~! GO-amended medium, was
investigated by Raman, XRD, UV—vis, FTIR and XPS analysis. Each
treatment was performed in quadruplicate.

2.3. Characterization

Electrochemical measurements were studied in a three-
electrode system to investigate the electrochemical activity of
G. sulfurreducens, in which RGO and GO with a glassy carbon elec-
trode (GCE) as working electrode, a saturated calomel electrode
(SCE) as reference, and a Pt wire as counter electrode. Open circuit
voltage (OCV), cyclic voltammetry (CV) (range from —0.7 Vt0 0.8 V,
scan rate 1 mV/s) and Differential pulse voltammetry (DPV) (range
from —0.6 V to 0.4 V, potential increment: 0.004 V; amplitude:
0.05 V; pulse width: 0.2 s; pulse period: 0.5 s) were collected using
a CHI760E electrochemical workstation (Shanghai Chenhua In-
strument Co., Ltd., China). G. sulfurreducens cells and RGO were
collected via centrifugation at 5000 and 8500 rpm for 5 min
respectively, and then washed three times with PBS (0.2720 g L~
KH,PO4, 0.2840 g L1 NayHPO4, pH 7.0) (You et al., 2018). The
harvested RGO resuspended with Nafion (75 uL RGO
precipitation + 2.5 pL 0.05% Nafion). The acquisition of resus-
pended GO was the same as RGO. 5 puL of G. sulfurreducens cells,
resuspended GO or resuspended RGO were drop casted over the
GCE, then quickly dried by a blower (cold air) until the surface
forming a film for electrochemical measurements (You et al., 2018).
Nitrogen saturated solution and room temperature were kept
during electrochemical test. The electrochemical data of each
sample were collected in triplicate.
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The steps of removing cell debris were as follows. All the RGO
samples were gathered via centrifugation at 8500 rpm for 5 min
and further washed in ultrapure water, 80% ethanol and 1 M HCl
(Salas et al., 2010). The samples were then freeze-dried and stored
for characterization.

Surface elemental components of the RGO and GO were deter-
mined with a Thermo ESCALAB 250XI XPS (Thermo Fisher Scien-
tific, America). The crystal structures were determined with XRD
using a X' Pert PRO MPD diffractometer (Holland Panalytical,
Holland) with Cu Ko (1.5406 A) radiation. FTIR transmission spectra
of the materials were obtained using a Bruker Vertex 70 FTIR
(Bruker, America). Raman spectra were recorded using a LabRAM
HR800 Raman spectrometer (Horiba Jobin Yvon, France) with an
exciting wavelength of 514.6 nm argon laser. The morphology of
RGO was analyzed with TEM and SEM. UV—vis spectra of the
aqueous suspension of RGO and GO were obtained using a TU-1901
UV-VIS spectrometer (Beijing Purkinje General Instrument Co., Ltd,
China).

3. Results and discussion
3.1. GO reduction by G. sulfurreducens

After adding G. sulfurreducens to GO treatments, black particle
aggregation was observed as shown in Fig. 1, which might due to
the decrease of polar functionalities on the edges of reduced ma-
terial with the increase of its hydrophobicity (Rathinam et al.,
2018). Reduction of GO was observed in all the treatments in the
presence of G. sulfurreducens, while visible form change was not
observed in the control, a treatment without adding strain PCA
(Fig. S2). In this study, the color change and formation of black
particle aggregation were observed in the medium amended with
0.1,0.2, 0.4, 0.6, 0.8, and 1.0 mg mL~! GO after 0.5,1,2, 3,5, and 8 d
of cultivation, respectively (Fig. 1 and S2), which indicated the
reduction of GO and the production of suspended graphene that
appeared black and insoluble (Gurunathan et al,, 2013). Average
time consumed for the formation of RGO via microbial reduction of
GO by G. sulfurreducens was shorter than that of most GO-reducing
bacteria (Gurunathan et al., 2013; Yoshida et al., 2016; Chen et al.,
2018; Shen et al.,, 2018). For example, E. coli was capable to
reduce 0.5 mg mL~! of GO to RGO after Day 3 (Gurunathan et al.,
2013), and the reduction of 0.17 mg mL~! GO and production of
RGO were observed in the presence of Shewanella (S. xiamenensis
BCO01, S. oneidensis MR-1 and S. putrefaciens CN32) after two days of
cultivation (Shen et al., 2018).

Exhaustive microscopic inspection on the morphology of
nanomaterials with microbes was researched through TEM and
SEM in this study. G. sulfurreducens was enveloped or partial
wrapped within materials films (Fig. 2c and g), and the curly surface
of reduced materials might due to the decreased hydrophobicity of
the sheets edge and internal stayed hydrophilic (Shen et al., 2018).
In comparison with pure G. sulfurreducens treatment (Fig. 2a and e),
the bacterial cells in the treatments amended with low concen-
tration of GO (0.1—0.6 mg mL™!) kept intact membrane and no
particles of nanomaterial was found from the interior of
G. sulfurreducens cells (Fig. 2c and g). Even though the membrane of
most cells remained intact, the damaged cell membrane in high GO
amendments (>0.8 mg mL~!) was observed (Fig. S3), suggesting
the toxicity of GO/RGO to G. sulfurreducens might be dose-
dependent (Wang et al., 2019b). GO was considered as a carbon
nanomaterial with good biocompatibility, which was able to
enhance the cell proliferation, and RGO was reported as an inhibitor
for bacterial growth (Akhavan and Ghaderi, 2012; Gurunathan
et al., 2013; Combarros et al., 2016; Ren et al., 2018). While in this
study, the weaker toxicity and affinity of RGO comparing to GO

nanowalls might due to partial removal of oxygen functionalities on
their surface after GO reduction (Hu et al., 2010; Hu and Zhou,
2013). Therefore, bacterial toxicity of GO and RGO were not fully
addressed. Besides, bacteria harbored the intracellular enzyme like
dehydrogenase, which was able to deoxidate a small amount of GO
that entered the cells (Wang et al., 2019b). These results suggested
that reduction of GO by gram-negative G. sulfurreducens was mainly
an extracellular process, however, partial of GO/RGO entered the
G. sulfurreducens cells in the treatments amended with high GO
concentration and an intracellular GO reduction process might
occur.

3.2. Characterizations of GO and RGO

SEM and TEM images of GO showed pristine GO had a flat and
smooth thin-layered structure with few creases (Fig. 2b and f).
While the surface of RGO reduced by G. sulfurreducens became
thick, corrugated and wrinkled, therefore their 2D membrane
structure could keep thermodynamically stable (Fig. 2d and h)
(Wang et al., 2012).

Raman scattering, a tool to characterize disorder in carbon
material was applied in this study to monitor the GO reduction
process (Prakash and Bahadur, 2014; Chen et al., 2016; Tang et al.,
2018b). Raman spectra of GO exhibited a strong G peak at
~1609 cm ™! and a strong D peak at ~1359 cm ™! (Fig. 3d). The G and
D peaks appeared due to the first order scattering of the Ezgzphonon
(the doubly degenerate in-plane optical vibration) of sp“ carbon
atoms and breathing mode of the Az symmetry (the molecule M is
completely symmetrical with an one of the lattice sites as center),
respectively (Gurunathan et al., 2013; Reich and Thomsen, 2004).
While in RGO, these two peaks shifted to a lower wavenumber at
~1604 cm~! and ~1352 cm™, respectively (Fig. 3c and d), which
indicated the damage of sp® network and the formation of defects
in RGO (Gurunathan et al., 2013). The Ip/I; (the idensity ratio of D
and G bands) of GO was 0.945, while the Ip/Ig fraction of RGO was
1.324 (Fig. 3c and d). The increase of Ip/Ig in RGO compared with
pristine GO was caused by the removal of oxygen function groups,
indicating the disorder and the number of sp? cluster increased
after reduction (Prakash and Bahadur, 2014; Zhao et al., 2018). Ratio
Ip/l¢ of RGO reduced by G. sulfurreducens was higher than that of
most synthetic RGO (including one-step solvothermal route, bio-
synthesized graphene and laser reducing GO) as summarized in
Table S1. Additionally, similar Raman spectra was observed in RGO
with bacterial debris (Fig. 3b), however the ratio Ip/lg slightly
decreased from 1.380 to 1.324 after removal of bacterial debris,
which might due to the reaction of remaining oxygen function
groups of RGO with 80% ethanol in the washing step (Bansal et al.,
2015). Besides, a peak at ~792 cm~! indicated the presence of mi-
crobes was observed in the Raman spectrum of pure
G. sulfurreducens and RGO with G. sulfurreducens (Fig. 3a and b), but
it disappeared in the RGO samples after removal of bacterial debris,
suggesting the microbes were completely removed.

FTIR analysis was performed to study the oxygen functional
groups in GO and RGO as shown in Fig. 4. The peaks of aromatic C=
C and C—H stretch were discovered at ~1639 and ~2922 cm™',
respectively, and their peak intensity was similar in both GO and
RGO. While values of four characteristic peaks in initial GO were
higher than those of RGO, which were ~3437/3408, ~1398, ~1273
and ~1072 cm™!, corresponding to O—H stretching, carboxyl C—O,
C—O0 stretching, >0 (epoxide), respectively. Those results indi-
cated an obvious reduction in the peak intensity of various oxygen
functionalities after GO reduction, such as hydroxyl, carboxyl, and
epoxide functionalities (Chen et al., 2016; Cho et al., 2018; Zhou
et al., 2019). FTIR of RGO reduced by G. sulfurreducens in this
study was in a good agreement with other bacterially induced RGO
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Fig. 1. The formation of RGO in the treatments with G. sulfurreducens and different initial concentration of GO (0.1, 0.6 and 1.0 mg mL™", respectively).

like those produced by P. aeruginosa PAO1 and S. xiamenensis BCO1
(Mokkapati et al., 2018; Shen et al., 2018). Two diffraction peaks at
~1350 cm ™! and ~1197 cm™! corresponded to P—C bonds and vp-o-c
(stretching vibration between P, O and C), respectively, were
emerged after GO reduction, and approximate peaks were observed
in porous graphene-black phosphorus nanocomposite (Cai et al.,
2019). Additionally, the characteristic absorption peak at
~1168 cm~! was detected in RGO corresponded to the CHsz(N)
stretching and CHy(N) stretching (Huang et al., 2018), suggesting
RGO reduced by G. sulfurreducens contained N and P.

The elemental status and contents of C, O, N and P were deter-
mined by XPS spectroscopy as shown in Fig. 5. Compared with GO,
XPS survey spectra of RGO performed extremely weak O 1s peak,
and strong N 1s and P 2p peaks (Feng et al., 2018; Rajpurohit et al.,
2019). The dominant XPS C 1s peaks of GO and RGO performed at
approximately 284.6 eV, and the dominant XPS O 1s peaks of GO
and RGO located at approximately 532 eV (Peng et al., 2018). An
obvious decrease in the O/C ratio from 1.21 of GO to 0.49 of RGO was
observed, which indicated the drop of corresponded oxygen func-
tionalities for RGO (Fig. 5a and b). It reported that the O/C fraction

for the hydrazine reduced GO varied from 0.21 to 0.09 with the
increase dosage of hydrazine and the contact time (Bansal et al,,
2015; Pei and Cheng, 2012). The peaks centered at ~284.8, ~285.2,
~286.9, ~288.9 and ~284.8 eV, could be respectively assigned to
C—C, C—0/C=N, C=0/C—N, 0—C=0 and C—P (Fig. 5cand d) (Wang
et al., 2019a). The post-reduction peak intensities for 0—C=0 and
C=0 were declined to a great extent, and the C—O peak of RGO was
slightly increased, which indicated considerable deoxidation of GO
in the presence G. sulfurreducens. The peak intensity post-reduction
was increased at ~284.8 eV, showing the restoration of sp? bonded
carbon after reduction. In addition, Fig. 5 (a) and (b) showed two
additional peaks at ~400.1 and ~134.1 eV, indicating the RGO
reduced by G. sulfurreducens contained N and P, respectively. The
peaks at ~132.9, ~133.9, ~399.8, ~401.6, ~402.6, and ~398.9 eV were
assigned to C—P, O=P, pyrrolic N, graphitic N, N—0, and pyridinic N,
respectively (Fig. 5g and h and S4) (Tang et al., 2018a; Rajpurohit
et al., 2019; Wang et al., 2019a). The N configuration in RGO was
mainly consist of pyrrolic N (89.69%) and graphitic N (6.36%), which
was well in agreement with the prepared N-doped graphene by
implanting N plasma (Wang et al., 2019a). N—O which was the N
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Fig. 2. SEM images of (a) pure G. sulfurreducens, (b) GO, (c) G. sulfurreducens cells with RGO, and (d) RGO after removal of G. sulfurreducens cells. TEM images of (e) pure
G. sulfurreducens, (f) GO, (g) G. sulfurreducens cells with RGO, and (h) RGO after removal of G. sulfurreducens cells.
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Fig. 3. Raman spectra of (a) pure G. sulfurreducens cells, (b) RGO with G. sulfurreducens
cells, (c) RGO after removal of G. sulfurreducens cells, and (d) GO.
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Fig. 4. FTIR spectra of GO and RGO reduced by G. sulfurreducens.

atom bonds with one O atom and two C atoms disappeared in RGO,
which further indicated the decrease of the O content after
reduction (Wang et al., 2019a). An increase of the N and P com-
ponents in RGO indicated GO might chemically react with phos-
pholipid or other biological macromolecules in G. sulfurreducens
cell membrane (Figs. 4 and 5). As reported by Luan et al. (2015) GO
was capable to interact with the free amine terminals of the
enzymes.

The XRD spectra of GO and RGO were performed in Fig. S5. The
GO exhibited an intense peak at 10.55° corresponded to the
reflection of graphene oxide (001). After G. sulfurreducens reduction
of RGO, the peak at 10.55° disappeared, and wide and intense
diffraction peak at 28.12° appeared, which was considered as
graphite spacing (002) according to previous study (Xu et al., 2011).
The alteration of XRD spectra was likely caused by the change of
interlayer spacing, the loss of oxygen functionalities and ordering of
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Fig. 5. XPS surveys of (a) GO and (b) RGO reduced by G. sulfurreducens. XPS C 1s spectra of (c) GO and (d) RGO reduced by G. sulfurreducens. XPS O 1s spectra of (e) GO and (f) RGO
reduced by G. sulfurreducens. (g) XPS N 1s spectra of RGO reduced by G. sulfurreducens. (h) XPS P 2p spectra of RGO reduced by G. sulfurreducens.

the 2D structure (Xu et al., 2011; Zhao et al., 2018). The UV—vis
analysis of GO showed a peak at 230 nm corresponded to w—m*
electronic transitions of C—C and C=C bonds, while this peak was
redshifted to 194 nm in RGO, which indicated the electronic
conjugation restored (Fig. S6) (Williams and Kamat, 2009; Prakash
and Bahadur, 2014; Cho et al, 2018). Besides, another peak
observed in RGO at 254 nm corresponded to defects and vacancies
indicated an increase of defect intensity (Cho et al., 2018). In
summary, the characterizations analysis showed an effective
decrease of oxygen function groups in reduced product, which
indicated a significant reduction of GO to RGO.

3.3. Electrochemical characterization measurement of pure
G. sulfurreducens and GO reduced by G. sulfurreducens

DPV of the test matrixes which performed the electrochemical
activity of bacterial-culture constituents, including (i) ‘Blank’, the
treatment with all required components in microbial culture except
adding G. sulfurreducens, and (ii) ‘Supernatant’, the remaining
medium after the removal of bacterial debris (Fig. 6a).

The reduction peak at 252 mV was observed in ‘Supernatant’ but
not in ‘Blank’ (Fig. 6a), indicated that G. sulfurreducens could secrete
some electrochemically active substances such as riboflavin or
flavinmononucleotide (FMN) outside the cell, which could indi-
rectly transfer electrons to extracellular electron acceptor
(Okamoto et al., 2014). DPV results of G. sulfurreducens exhibited
the reduction peak at —326 mV and the oxidation peaks at
both —360 and —164 mV, due to various redox active c-Cyts in the
membrane of G. sulfurreducens (Peng and Zhang, 2017; Cai et al,,
2018). C-Cyts played important roles in the bacterial process of
extracellular electron transfer. For example, OmcZ could directly
transfer electrons through the biofilm, and OmcB was involved in
the electron transfer across the extracellular electron acceptors/
biofilm interface (Richter et al., 2009).

DPV showed the oxidation and reduction peak currents of RGO
were in the range of 2.56 to 11.17 pA at —28 mV, and —2.40
to —10.95 pA at —158 mV, respectively (Fig. 7a). Besides, the anodic
and cathodic peak currents of RGO were 1.24-4.36 and 1.24-5.64
times higher than those of GO, respectively, suggesting the

improvement of electrochemical activity in RGO with the increase
of initial concentrations of amended GO. Better performance in
electrochemical activity of RGO was further confirmed by CV
analysis (Fig. S7a). The anodic and cathodic peak currents of RGO
were 1.05-2.31 and 4.69-18.77 times higher than those of GO in CV
analysis, respectively, which was mainly due to the functional
groups (e.g. O—C=0 and C=O0) in GO hindered the electron
transfer between electrolyte and electrode surface leading to the
decrease of electrochemical activity (Rostamabadi and Heydari-
Bafrooei, 2019). Besides, the increase of N and P content in RGO
and reduction of oxygen functionalities led to the increased current
response of RGO comparing to initial GO (Rostamabadi and
Heydari-Bafrooei, 2019; Wang et al., 2019a). The current values of
RGO were similar to the chemically synthesized reduced graphene
oxide (Afzali et al.,, 2019; Srivastava et al., 2019). For example,
chemical reduced GO (e.g. with 0.1 M NaOH solution and 30 mg of
sodium citrate) was ~10 pA (Afzali et al., 2019). Besides, Srivastava
et al. (2019) modified a glassy carbon electrode (GCE) with
rGO@WS;QDs in the presence of up to 84.2 uM of chloroquine, and
detected current was lower than 6 pA by DPV.

DPV analysis of GO-amended medium, after the removal of
bacterial debris and RGO, showed similar results in ‘Supernatant’
samples (Figs. 6a and 7b). In particular, the cathodic peak at 252 mV
was observed only in the treatments of 0.6, 0.8, and 1.0 mg mL™! of
GO, which suggested higher concentration of GO amendment in
G. sulfurreducen could promote the secretion of electrochemically
active substances (e.g. riboflavin) outside the cell (Okamoto et al.,
2014). However, further increase the initial GO amendment to 0.8
and 1.0 mg mL~}, a clear decrease in cathodic peak currents of GO-
amended medium was observed, which indicated the excessive
dosage of GO might inhibit the growth of G. sulfurreducens and
these results were in good agreement with the damaged cell
membrane observed in TEM images (Fig. S3). Therefore, in this
study 0.6 mg mL~! of GO was considered as an optimal condition
for G. sulfurreducens to perform GO reduction and the biosynthetic
RGO had a desired electrochemical conductivity.
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3.4. Possible mechanism for reaction of GO with G. sulfurreducens

To further probe possible mechanism for GO reduction by
G. sulfurreducens, OCV of G. sulfurreducens and GO were detected.
OCV of G. sulfurreducens was —104.142 mV, indicating that
G. sulfurreducens surface had reducibility; while that of GO was
43.612 mV, indicating that GO surface was oxidative. Therefore, GO
reduction by G. sulfurreducens was an oxidation-reduction reaction
with electrons transferred from G. sulfurreducens to GO.

On the basis of our knowledge and available references of
extracellular electron transfer pathway of Geobacter, putative
metabolic interaction between GO and G. sulfurreducens was pro-
posed in the Fig. 8. Acetate, as an organic substrate and electron
donor, could enter the TCA cycle for NAD(P)H generation
(Mahadevan et al., 2006; Meng et al., 2013). Electrons were shifted
into the inner membrane by NAD(P)H dehydrogenase, then trans-
ferred out of the inner membrane by c-Cyts, and finally transported
to the extracellular environment via outer membrane c-Cyts such
as OmcB and OmcZ (Lovley, 2006; Meng et al., 2013; Song et al.,
2016). Additionally, redox electron mediators such as riboflavin
and FMN were generated and transferred outside the cell (Okamoto
et al., 2014). Riboflavin or FMN secreted by G. sulfurreducens firstly
bounded c-Cyts to transfer electrons instead of relying on riboflavin
or FMN themselves (Michelson et al., 2017). Thus, self-secreted
soluble redox electron mediators and c-Cyts were both involved
in the electron transfer in the bacterial cells/GO interface of Geo-
bacter (Michelson et al., 2017). However, the mechanism of GO
reduction by G. sulfurreducens was different comparing to another

conductive bacteria Shewanella (Jiao et al., 2011; Wang et al., 2011;
Gurunathan et al, 2013). In our study, GO reduction of
G. sulfurreducens mainly depended on the outer membrane c-Cyts
especially in the treatments with lower GO amendments
(<0.4 mg mL™1), while GO reduction of Shewanella relied on both c-
Cyts and flavin under the similar conditions (Wang et al., 2011;
Delgado et al., 2019). Still, the types and functions of c-Cyts
involved in the GO reduction of G. sulfurreducens were not fully
addressed, and further identities of the key self-secreted electron
mediators were required.

4. Conclusions

This study provided a green chemistry route for the biological
production of RGO by G. sulfurreducens. These results confirmed
that 0.6 mg mL~! was an optimum dosage for G. sulfurreducens to
perform GO reduction and the biosynthetic RGO showed a desired
electrochemical conductivity. Higher amount of GO amendment
caused the damage to the cell membrane. The mechanism for GO
reduction by G. sulfurreducens was mainly through extracellular
electron transfer at microbial cell/GO interface, while, further re-
searches on the regulation of extracellular electron transport
through c-Cyts as well as the key electron mediators in bacterially
induced GO reduction are required. Overall, these results give
further insight into the microbial reduction of GO by
G. sulfurreducens, which provides a feasible method in the bioen-
gineering and commercial application of functional bacteria in the
production of graphene and its derivatives.
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