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Abstract: Characterisation of transmissivity heterogeneity is critical for 
groundwater flow and solute transport. The heterogeneity of transmissivity is 
studied through variogram-based techniques. Conventionally, the parameters in 
variogram are obtained by fitting measurements to a theoretical variogram. 
However, conditioning to the sampled geological variables neglects the effects 
of observed concentration data. This paper presents a coupled inverse 
modelling system conditioning to both types of measurement. The results of a 
hypothetical two-dimensional steady flow indicated that the description of 
transmissivity and solute concentration field was improved when both 
measured transmissivity data and solute concentration data were combined in 
the coupled inverse modelling system. 

Keywords: groundwater; heterogeneity; inverse modelling; variogram; 
transmissivity. 
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1 Introduction 

The dynamic prediction of solute transport in groundwater is one of the most  
important steps towards effective groundwater management (Li et al., 2007). However,  
groundwater flow and solute transport predictions are always uncertain due to an 
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imperfect knowledge of the aquifer properties (Zeng et al., 2004). One of the 
uncertainties results from aquifer heterogeneity. Heterogeneity includes variations in 
grain-size, porosity, mineralogy, lithologic texture, rock mechanical properties, structure 
and digenetic processes. All these factors cause variations in transmissivity, storage, and 
thus control flow and transport in the aquifer (Timothy, 2006). Among various 
parameters, the heterogeneity of transmissivity (T) has attracted wide attention for its 
spatial variability is considerably higher than that of other properties and it can vary by 
orders of magnitude over a few metres (Feyen et al., 2003). 

It is of crucial importance to improve the characterisation of transmissivity field, for it 
is served as inputs to the groundwater flow and solute transport simulator. During the last 
decade, the heterogeneity of transmissivity has been studied based on the statistical 
analysis because of its random characteristic (Weissmann and Fogg, 1999; Wang et al., 
2001; Vrankar et al., 2004; Flipo et al., 2007). The majority of the applications have 
employed variogram-based techniques (Feyen and Caers, 2006). In the application, the 
variogram function form of transmissivity should be firstly determined by matching the 
experimental variogram to a theoretical variogram family either through determinative 
method or stochastic simulation. Curve-fitting techniques are the most commonly used 
determinative method, including ordinary or weighted least squares estimation, maximum 
or restricted maximum likelihood estimation. Recently, Bayesian approach is introduced 
to estimate the unknown values of parameters in the variogram function, which makes the 
prediction of groundwater flow and solute transport more conservative (Feyen et al., 
2002, 2003; Xu et al., 2005, 2006). 

The step described above reflects the degree of experimental variogram matching 
with a theoretical one. However, it neglects the role of observed concentration (c) data,  
in spite of the fact that concentration data, for example, from controlled tracer tests, may 
give important information on spatially variable aquifer prosperities like transmissivity. 
Rubin (1991) developed an approach that allows the conditioning of concentration 
ensemble moments on hydraulic head, conductivity, velocity and concentration 
measurements. But the approach failed to update the transmissity field. Franssen et al. 
(2003) extended the self-calibrating method to the coupled inverse modelling of flow and 
transport conditioning to hydraulic conductivity (K) data, hydraulic head data (h) and 
concentration data (c). Conditional to K data was simulated by geostatistical method and 
conditional to h and c data was achieved by minimising the objective function consisting 
of the head and concentration discrepancies between the observed and simulated values. 
The methodology updated hydraulic conductivity field by perturbation at master blocks. 
However, the calculation of the optimal perturbation was not straightforward with a 
complex computation process. 

It is believed that in groundwater flow and solute transport simulation at least two 
types of measurements should be taken into account: 

• the sampled geological parameters 

• the observed solute concentration data. 

In this paper, an optimal groundwater flow and solute transport simulation method in 
heterogeneous aquifer is developed. The method combines the effects of sampled 
transmissivity measurements and solute concentration observations and updates  
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the two types of data simultaneously. The method is then applied to a hypothetical  
two-dimensional steady flow in heterogeneous confined aquifer. The worth of the  
two types of data has also been illustrated. 

2 Methodology 

The groundwater flow in a heterogeneous confined aquifer is considered as 

hT h S W
t

∂∇ ⋅ ∇ = +
∂

 

where T is the transmissivity, h is the potentiometeri head, W represents sources or sinks 
of water, S is the specific storage of the porous material, and t is the time. 

And the solute transport is described as 

1 ( ) s
cD c vc q

R t
θ θ θ ∂∇ ⋅ ⋅ ∇ − = +

∂
 

where R is retardation factor, θ is porosity of the subsurface medium, D is the 
hydrodynamic dispersion coefficient tensor, c is the solute concentration, v is seepage or 
linear pore water velocity, and qs is volumetric flow rate per unit volume of aquifer 
representing solute sources and sinks. 

To solve the groundwater flow and solute transport model, the transmissivity (T) field 
has to be estimated. The first step for the estimation is to determine the form of 
variogram by fitting the measured transmissvity data. Generally, transmissivity is found 
to be log-normally distributed in a heterogeneous aquifer (Freeze, 1975; Sudicky, 1986). 
Let T(x) denote the stochastic transmissvity field and its log form is denoted as 
Y(x) = log10T(x), where x is the unmeasured spatial location. The objective function of the 
fitting process can be defined as follows: 

sim obs 2
1

1
( )

iYN

Y i i
i

J Y Yξ
=

= −∑  

where NiY is the number of measured Y values, ξY are the weights that chosen  
inverse-proportional to the average estimated measurements errors, and the superscripts 
sim and obs refer to ‘simulated’ and ‘observed’ data, respectively. 

After the experimental variogram is obtained, the transmissivity field is generated  
by geostatistical simulation, either determined or stochastic, for instance, Kriging 
interpolation, Gaussian sequential simulation, sequential indicator simulation and so on. 
Then the generated T field is used as inputs to groundwater flow and solute transport 
model. The conditioning to the solute concentration observations is achieved by 
comparing the measured concentration values with their simulated values at the same  
locations and times. The objective function defined to measure the mismatch between 
simulated and measured head and concentration values are as follows: 
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sim obs 2
2

1 1 1

( )
jctc ic NN N

c ijt ijt
t i j

J c cξ
= = =

= −∑∑∑  

where J2 corresponds to the solute concentration discrepancies at the different time  
steps and locations; Ntc is the simulating time steps of concentration; Nic is the number of 
observed concentration data; Njc is the number of solutes; c represents the solute 
concentration value, ξc are the weights chosen inverse-proportional to the average 
estimated measurements errors. 

With consideration of the two types of data, the updating process is achieved by 
minimising the mismatch between the theoretical and experimental variogram and the 
differences between simulated and measured concentration values: 

1 1 2 2J J Jϕ ϕ= +  

where ϕ1 and ϕ2 are the values of trade-off coefficient that are chosen according  
to the importance and overall variability within the study area. The objective function  
J is minimised to achieve a satisfactory reproduction of the log10T and c field.  
When J reaches a value below a user-defined one, it is considered that the log10T and c 
field are reproduced sufficiently close to the reference field. The minimisation process is 
terminated in case the number of iterations exceeds a user-specified maximum number of 
iterations or the objective function reduction is very small during the iterations. It is 
possible that the optimisation finds a local minimum, but in case of a sufficient close 
reproduction of the measured data, this is not considered to be a problem (Zeng et al., 
2007). Nevertheless, the implementation of faster converging optimisation algorithms 
that are less sensitive to local minima is subject to future research. 

3 Applications 

In the paper, a hypothetical two-dimensional steady flow and transport in heterogeneous 
confined aquifer (Wilson and Miller, 1978) is adopted to illustrate the application of  
the method. The study area is depicted in Figure 1. The flow model is surrounded by 
constant-head boundaries on the east and west borders and no-flow boundaries on the 
north and south borders. The head values at the constant-head boundaries are arbitrarily 
chosen to establish the required hydraulic gradient and force a flow from west to east.  
A spill of an inert contaminant occurred in the study area. The study area is discredited 
into 46 columns along x-axis and 31 rows along y-axis. Table 1 lists part of the modelling 
inputs. Groundwater flow is simulated in MODFLOW (Harbaugh and McDonald, 1996) 
with finite difference method and solute transport is simulated in MT3DMS (Zheng and 
Wang, 1999) with the method of characteristics solution scheme. 

The reference log10T field is generated using the Sequential Gaussian Simulation 
(SGSim) algorithm of GSLIB (Deutsch and Journel, 1998) with an average log10T of 
2.0 log10 (m2/s). The variogram of log10T is exponential with a range of 50 m, zero nugget 
and sill of 1.0 (log10 (m2/s))2. The reference log10T and the reference concentration field 
for time steps 100d, 200d and 300d are depicted in Figure 2. 
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Figure 1 Plan view of study area 

 
 

Table 1 Part of the modelling parameters 

Parameter Value Unit 

Cell width along rows (∆x) 10 m 

Cell width along columns (∆y) 10 m 

Layer thickness (∆z) 10 m 
Groundwater seepage velocity (vx) 0.33 m/s 
Porosity (n) 0.3 – 
Dispersivity along x-axis (Dx) 10 m 
Dispersivity along y-axis (Dy) 3 m 
Volumetric injection rate (qs) 1 m3/d 
Concentration of the injected pollutant (cs) 1000 ppm 

Figure 2 Reference log10T field, solute concentration field for time steps 100d, 200d and 300d 
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Figure 2 Reference log10T field, solute concentration field for time steps 100d, 200d and 300d 
(continued) 

  

3.1 Scenarios studied 

As the Kriging interpolation is applied to generate Y field, two sets of transimissivity (T) 
data with different sampling density are used as conditional data for interpolation.  
The sets are defined so that the smaller set is a subset of the larger one to circumvent the 
effect of varying T sampling density on the generated Y field and solute concentration (c) 
field between two sets. With the consideration of the number of Y data used for 
interpolation and the type of conditional data used for inverse modelling, six different 
scenarios are calculated. Table 2 illustrates the types and the numbers of data used.  
In two of the six scenarios (Scenario 1 and 3), 8 Y data are incorporated in the updating 
process. And in the other two of the six scenarios (Scenario 4 and 6), 70 Y data are 
incorporated. In four of the studied scenarios (Scenario 2, 3, 5 and 6), c data are 
incorporated in the updating process. The c data are sampled from the reference 
concentration data for the time step of 100d, 200d and 300d at 11 locations along and 
perpendicular to the studied field. Among them, 8 Y data are used as conditional data for 
Kriging interpolation in Scenario 2 and 70 Y data in Scenario 5. Figure 3 shows the 
location of the conditional data. 

Figure 3 Sample locations of transmissivity and concentration 

  

Table 2 Data sets incorporated in the updating of the different scenarios 

 8 Y Data 70 Y Data 11 c Data 
Scenario 1 Yes No No 

Scenario 2 No  
(used in the Kriging interpolation) 

No Yes 
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Table 2 Data sets incorporated in the updating of the different scenarios (continued) 

 8 Y Data 70 Y Data 11 c Data 
Scenario 3 Yes No Yes 
Scenario 4 No Yes No 

Scenario 5 No No  
(used in the Kriging interpolation) 

Yes 

Scenario 6 No Yes Yes 

3.2 Evaluation of results 

Each of the realisations is compared with the reference fields and the following 
performance measures are defined for each of the scenarios: 

2
SIM REF

1

1 ( )
n

i

E X X
N =

= −∑  

where E is the average square root error, N is the number of grid cells, and i is the cell 
index, X represents either log T or solute concentration in a certain grid cell, the 
subscripts SIM and REF refer to the simulated and the reference values, respectively. 

3.3 Results 

In this paper, Genetic Algorithm (Harrouni et al., 1996; Giacobbo et al., 2002;  
Zeng et al., 2003) is applied to update the Y data and c data in the inverse modelling 
process. Table 3 shows the calculated average square root error (E) for the six scenarios. 
As most previous researches were based on the conditional to Y data method, the 
calculated E of other scenarios are compared with them Scenario 1 or Scenario 4, 
respectively. 

Table 3 Average square root error for different scenarios 

 E(Y) E(c) 

Scenario 1 0.7371 0.8883 
Scenario 2 0.7397 0.9343 
Scenario 3 0.7328 0.7767 
Scenario 4 0.6088 0.4507 
Scenario 5 0.6163 0.4753 
Scenario 6 0.5923 0.4043 

3.3.1 Results when a single type of data is used for inverse modelling 

In this section, Scenario 1, 2, 4 and 5, where only one type of conditional data is 
considered in the updating procedure, are analysed. The better results are obtained when 
Y data are used. When c data are used, both the characterisation of transmissivity field  
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and solute concentration field become worse. Compared with Scenario 1, the E(Y) and 
E(c) increases 0.4% and 4.9% for Scenario 2, respectively. And compared with  
Scenario 4, the E(Y) and E(c) increases 1.2% and 5.5% for Scenario 5, respectively.  
It indicates the important role of transmissivity data in helping improving the description 
of transmissivity field and thus solute concentration field. When the c data are used as 
conditional data individually, although the optimisation target could reach the minimum, 
it takes no effect on the overall solute concentration distribution. 

3.3.2 Results when different numbers of transmissivity data are used  
for interpolation 

To further investigate the role of conditional transmissivity data, Scenario 1, 2, 3 are 
compared with Scenario 4, 5 and 6. In Scenario 1, 2 and 3, 8 Y data are used for Kriging 
interpolation while in Scenario 4, 5 and 6, 70 Y data are used. In all cases,  
when conditioning to the same type of data, the characterisation of the transmissivity 
field and solute concentration field improves for more conditional transmissivity data 
scenarios. E(Y) is reduced 17.4%, 16.7% and 19.2%, respectively, with respect to 70 Y 
data scenarios in comparison with 8 Y data scenarios. E(c) is reduced 49.3%, 49.1% and 
47.9%, respectively, with respect to 70 Y data scenarios in comparison with 8 Y data 
scenarios. It shows that conditioning to more transmissivity data helps to yield a better 
description of the transmissivity field and thus resulting in a noticeable improvement of 
the characterisation of solute concentration. 

3.3.3 Results for the coupled inverse modelling 

In case both transmissivity and solute concentration data are available in the updating 
process (Scenario 3 and 6), better results are obtained. For 8 Y data scenario, the E(Y) and 
E(c) reductions are 0.6% and 12.6%. And for 70 Y data scenario, the E(Y) and E(c) 
reductions are 2.7% and 10.3%. It should be noticed that the combination use of 
transmissivity data and solute concentration data yields important E(Y) reductions and 
significant E(c) reductions. The greater reduction of E(Y) occurs in the more conditional 
transmissivity scenario. However, the greater reduction of E(c) occurs in less conditional 
transmissivity scenario, which is usually the reality in practice. The generated log10T field 
and the relative solute concentration field of Scenario 6 can be seen in Figure 4. 

Figure 4 log10T field and the relative solute concentration field for time steps 100d, 200d  
and 300d of Scenario 6 
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Figure 4 log10T field and the relative solute concentration field for time steps 100d, 200d  
and 300d of Scenario 6 (continued) 

  

4 Summary 

Instead of traditional conditioning to transmissivity method in solute transport simulation 
in the groundwater, the coupled inverse modelling method was presented. The developed 
methodology took the effect of both measured transmissivity data and solute 
concentration data into account in the procedure of an inverse optimisation.  
A hypothetical two-dimensional steady flow and transport in a heterogeneous aquifer was 
used as an example. Six different scenarios were considered in the paper to investigate 
the role of different types of conditional data and different numbers of conditional data. 
The results indicated that transmissivity played an important role on charactering 
transmissivity field and improving the precision for solute concentration simulation when 
a single type of data was used in the updating process individually. More transmissivity 
data helped to yield a better description of the transmissivity field and a noticeable 
improvement of the characterisation of solute concentration. On the contrary,  
the measured concentration data took no effects on improving the description of either 
transmissivity field or solute concentration field when it was used as conditional data 
individually. However, the greater improvement of the description of transmissivity and 
solute concentration field occurred when both measured transmissivity data and solute 
concentration data were combined in the coupled inverse modelling system. The coupled 
inverse modelling provided a trade-off between geological setting and solute transport.  
It made a more comprehensive use of available data and had potential for a large range of 
applications. 
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