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A B S T R A C T   

The mechanisms of N2O emissions from inland rivers remain poorly understood because of the high variability of 
dissolved N2O concentration and the complexity of influencing factors. Thus, it is necessary to research the 
spatiotemporal patterns and influencing factors to understand the driving mechanisms of riverine N2O emissions. 
We combine the Soil and Water Assessment Tool (SWAT) outputs with established empirical equations to identify 
the spatiotemporal fluctuations of riverine N2O emissions and evaluate model performance through field mea-
surements in a typical watershed. The spatiotemporal hotspots of N2O emissions are then determined, and the 
relative importance of environmental variables is further determined by correlation and attribution analysis. The 
results indicate that the riverine N2O emissions are relatively high from August to October, which accounted for 
35.38% of the annual emissions. Temporal changes are attributed to agricultural activities and meteorological 
factors. Agricultural activities such as planting and fertilization lead to increased diffuse nitrogen loads on the 
land surface. Meantime, heavy precipitation events enhance the transport of nutrients, resulting in changes in 
nitrogen levels in the river. Spatial analysis shows that the urban watersheds (191.22 ± 156.19 μmol m− 2 d− 1) 
are the hotspots of riverine N2O emission, which are 1.55–3.03 times that of non-urban rivers. Spatial variations 
are mainly affected by riverine physicochemical indicators for different watersheds. Sewage from various sources 
received by urban rivers provides appropriate environmental conditions for N2O production, and transports large 
exogenous dissolved N2O. Furthermore, salinity (r = 0.80; p < 0.001) and nitrogen nutrients in riverine phys-
icochemical indicators show a significant correlation with N2O fluxes. It emphasizes that N-related (TN, NH4

+, 
NO3

− ) indicators are important reactants for N2O generation, which can promote nitrification and denitrification. 
Meanwhile, the results of structural equation modeling (SEM) also demonstrate that N2O emissions follow a 
similar pattern to riverine dissolved N2O concentration (r = 0.841, p < 0.001), and non-point source (r = 0.678, 
p < 0.001) play an important role in the changes of dissolved N2O concentrations. Our results highlight that 
certain hot moments and hot spots of rivers play a disproportionate role in year-round and basin-wide N2O 
emissions, respectively. It is necessary to implement more effective management measures by controlling key 
environmental factors to reduce N2O emissions.   

1. Introduction 

Nitrous oxide (N2O), as one of the powerful greenhouse gases 
(GHGs), is an important contributor to climate change with a global 
warming potential 265 times that of carbon dioxide (CO2) (Song et al., 
2022). The atmospheric concentration of N2O has steadily increased 
from 270 ppb since the mid-18th century to 335 ppb in 2022 due to the 
recent great increase in human activities (Lan et al., 2022). This steady 

increment is primarily attributable to direct emissions from soils caused 
by agricultural activities (Huang et al., 2022). Furthermore, some ni-
trogen from agricultural activities can be transported via leaching and 
surface runoff, thereby promoting N2O generation and emissions from 
aquatic systems (Chen et al., 2015). These off-site emissions are 
considered indirect N2O emissions (Wang et al., 2022). Anthropogenic 
sources are estimated to account for 38.5% (2.7–11.1 Tg y− 1) of global 
N2O emissions, of which 10–17% (0.68–0.9 Tg y− 1) are from inland 
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rivers (Wang et al., 2021). Among the river ecosystems, N2O emission 
flux (μg N2O – N m− 2 h− 1) followed these principles: subtropical rivers 
(median = 26.5 ± 334.0) > temperate rivers (median = 25.2 ± 554.4) 
> tropical rivers (median = 11.8 ± 204.0) (Li et al., 2021). Compared 
with other ecosystems, the spatiotemporal patterns of N2O emissions 
from subtropical rivers have considerable variability (Hu et al., 2016). In 
addition, given the high variability of N2O and the complexity of 
influencing factors, more studies emphasize the necessity of better 
quantifying the contributions of various driving factors to the spatio-
temporal pattern in riverine N2O emissions (Zhao and Zhang, 2021). 
Hence, identifying hotspots of N2O emissions and exploring the impacts 
of driving factors on riverine N2O emissions have important implications 
for reducing N2O emissions. 

Currently, most research of riverine N2O emissions at the basin scale 
has been conducted through air-water gas exchange models, chambers 
or process-based models (Fu et al., 2018). However, specific site ex-
periments and monitoring are difficult for evaluating the spatiotemporal 
pattern of riverine N2O emissions at the catchment scale because of low 
spatiotemporal sampling resolutions and high variability of dissolved 
N2O concentration. Therefore, watershed-scale models are a powerful 
method for assessing the spatiotemporal pattern in riverine N2O emis-
sions (Gao et al., 2020). Soil and Water Assessment Tool (SWAT) is a 
process-based model at the watershed scale that simulates hydrological, 
nutrient, and biogeochemical cycles. The official version of SWAT 
cannot simulate riverine N2O emissions, but previous studies have 
demonstrated the feasibility of using SWAT as a framework to study the 
spatiotemporal fluctuations of N2O emissions. By far, SWAT-DayCent 
(daily CENTURY), SWAT-N2O, SWAT-GHG, SWAT-MKT (Microbial ki-
netics and thermodynamic), and SWAT-N2O coupler were developed to 
simulate N2O emissions at the catchment scale by integrating the SWAT 
model with biogeochemical processes or empirical models or both 
(Bhanja et al., 2019; Gao et al., 2019; Shrestha et al., 2018; Wagena 
et al., 2017; Wu et al., 2016; Yang et al., 2017). However, the above 
models focus on N2O emissions from the soil instead of N2O emissions 
from river networks at the watershed scale. Recently, Gao et al. (2020) 
established a riverine dissolved N2O concentration model with different 
dissolved inorganic N (DIN = [NH4

+] + [NO3
− ]) levels based on obser-

vations collected from different regions. The dissolved N2O concentra-
tion model and dynamic atmospheric N2O concentration algorithm were 
integrated into SWAT to develop SWAT-FN2O. SWAT-FN2O achieved 
acceptable performance in mid-to-high latitude agricultural watersheds 
(Gao et al., 2020). However, we found some differences between the 
simulated and observed values of dissolved N2O concentrations during 
practical application because of the high spatial heterogeneity of dis-
solved N2O concentrations. In addition, Marzadri et al. (2017) proposed 
a process-based parsimonious model at the watershed scale, but this 
model neglected the effect of diffuse nitrogen from the land surface 
(Gao et al., 2020; Marzadri et al., 2020). Some global N2O models 
containing surface hydraulics information have been developed (Mar-
zadri et al., 2020; Tian et al., 2020; Yao et al., 2020), but the contri-
bution of benthic and hyporheic are not well described (Marzadri et al., 
2021). The power law scaling model parameterized riverine N2O emis-
sions using two denitrification Damköhler numbers (Marzadri et al., 
2020), but this model ignored N2O input outside the channel (Hu et al., 
2021a). The recent application of machine learning methods in the 
environmental domain has achieved satisfactory results. However, due 
to the scarcity of local environment variables and available N2O data, 
using existing algorithms to directly simulate riverine N2O emissions 
may cause poor forecasts (Marzadri et al., 2021). 

The production of N2O in rivers is considered to be controlled by 
different environmental factors interacting in complicated ways. The 
driving factors of N2O emission can be divided into local factors and 
regional factors (Grossel et al., 2021). Local factors dominate microbial 
processes at the microscopic scale, mainly including water environ-
mental factors and stream hydraulics (Quick et al., 2016). Regional 
factors can significantly influence local factors at the macro scale, 

usually determined by large-scale environmental changes (Grossel et al., 
2021). Regional factors mainly include pollution sources, meteorolog-
ical factors, and land use. Temporally, monthly N2O emission fluxes are 
influenced by seasonal cycles of transport velocities and the concen-
tration gradient of N2O. These changes are primarily controlled by 
meteorological changes and non-point source effects (Gao et al., 2020). 
Spatially, the N2O emissions rates of different watershed landscapes are 
significantly different. Land use is a multifaceted reflection of riverine 
characteristics, incorporating those that can considerably impact N2O 
production (e.g., microbial processes, river chemistry, and riverbed 
morphology) (Zhang et al., 2020a). 

Regional factors and local factors are not independent of each other 
but are related. The relative importance of different driving factors to 
N2O emissions remains unclear (Soued et al., 2016). Existing studies to 
identify driving factors of N2O emissions typically used single factor or 
simple regression analysis, while attribution analysis methods based on 
observational data are scarce (Qin et al., 2020). Recently, attribution 
analysis methods represented by structural equation modeling (SEM) 
are being used to visually distinguish the effects of environmental var-
iables (Liang et al., 2021). The SEM takes into account not only the 
direct impacts of environmental factors on research objectives, but also 
the interplay among various factors. The pathway model helps to clarify 
the relationship between environmental variables and N2O emission 
fluxes, and the established SEM can quantify the relative contributions 
of various driving factors (Zhao and Zhang, 2021). The partial least 
squares (PLS) SEM is one of the SEM models. Compared with traditional 
SEM, it has less stringent requirements on the amount of data and 
normal distribution (Hair et al., 2012). To further explore the interaction 
of regional factors and local factors, we decoupled the environmental 
variables utilizing SEM. 

The Liuyang River Basin (LYRB) is located in the subtropical 
monsoon climate region in central China, and has a distinct seasonal 
pattern of hydrology and meteorology. Meanwhile, LYRB is dominated 
by forest, agriculture, and urban areas from upstream to downstream 
according to the different landscapes of the basin. Therefore, the 
spatiotemporal patterns are more representative and the meteorological 
and hydrological effects are more significant when the LYRB is taken as 
the study area for the study on riverine N2O emissions. Specifically, the 
main goals of this study are to (i) assess the spatiotemporal patterns of 
N2O emissions using a combination of SWAT output results and estab-
lished empirical equations, (ii) find the temporal and spatial hotspots of 
N2O emissions and identify the main factors affecting the spatiotemporal 
patterns, and to (iii) explore the relative contribution of environmental 
factors to N2O emission fluxes. 

2. Materials and methods 

2.1. Study area 

Liuyang River is the second-class tributary of Yangtze River, with a 
watershed area of 4665 km2 and a total length of 222 km. The LYRB is 
located in central China and has a subtropical climate. The average 
temperature is about 17.4 ◦C, and the annual rainfall is around 1601.1 
mm. The altitude of the LYRB ranges from − 14 to 1603 m, and the 
terrain is high in the northeast and low in the southwest (Fig. 1). 

The main land use types of the LYRB are forestland, cropland, urban, 
and water. In order to reveal the magnitude of N2O emission and further 
compare the emission hotspots of different types of rivers, we defined 
the ranked 20% watersheds according to the percentage of land use as 
urban watersheds (UW, %urban ≥ 20%), agricultural watersheds (AW, 
%cropland ≥ 25%), and forest watersheds (FW, %forest ≥ 75%) in 
order. The remaining watersheds were determined as mixed watersheds 
(MW, %forest < 75%& %cropland < 25%&% urban < 20%) (Zhang 
et al., 2020a, 2021) (Fig. S1). 
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2.2. Data sources 

We chose fifty-one sampling sites along the Liuyang River in January 
2021 and July 2021 according to the proportion of various land use 
types in the whole watershed (Fig. 1). Of the 51 sites, 21, 6, 6, and 18 of 
them were collected in forest rivers, agricultural rivers, urban rivers, and 
mixed rivers, respectively (Table S1). A total of 15 environmental var-
iables were measured. The pH, dissolved oxygen (DO) and water tem-
perature (WT) were measured in situ (HQ2200, HACH, USA). At the 
same time, 4 × 250 mL river surface water was collected for further 
laboratory measurements to determine total phosphorous (TP), total 
nitrogen (TN), ammonia nitrogen (NH4

+), nitrate nitrogen (NO3
− ), 

chloridion (Cl− ), and sulfate ion (SO4
2− ). All these environmental vari-

ables were measured based on the standard methods. 
For N2O analysis, water samples were slowly poured into the sample 

vials and overflowed several volumes of water after flooding the sample 
vials while preventing bubbles during the draining process. Afterwards, 
200 μL of HgCl2 (0.5% v/v final concentration) was injected to the 
samples to restrain microbial activity. Then they were stored in a low- 
temperature environment and returned them to the laboratory to 
determine dissolved N2O in the water samples by headspace equilibrium 
techniques (Agilent 7890B, μECD) (Wang et al., 2018). 

The input basic data for the SWAT model included Digital Elevation 
Model (DEM), land use, soil, and weather data, and types and sources of 
the SWAT model data were summarized in Table S2. Meanwhile, we 
intended to assess the drivers of N2O emissions in the watershed and 
thereby compiled some of the environmental factors which have been 
previously documented or predicted to potentially affect N2O emissions 

at the watershed scale (Ghimire et al., 2020; Yao et al., 2020). The 
environmental factors are listed in Table S3, including land use, water 
quality, point source, non-point source, and meteorological factors. We 
screened the observed variables in different types of factors by indicator 
loadings. Theoretically indicator loadings should be greater than 0.700. 
However, indicator loadings of 0.400 to 0.700 are satisfactory when the 
average variance extracted (AVE) is greater than 0.500 (Table S6) (Hair 
et al., 2012; Hulland, 1999). 

2.3. N2O emissions fluxes for rivers 

The riverine N2O emissions model consists of the following modules:  

(i) The air-water gas exchange model was used as the framework for 
modeling riverine N2O emissions (Wang et al., 2020). Riverine 
N2O emissions fluxes were calculated by the water-air gas ex-
change, which is dependent on the N2O transfer velocity, and the 
air-water N2O concentration gradient (Wang et al., 2020), as 
follows: 

FN2O = KN2O

(
[N2O]water − [N2O]eq

)
(1)  

where FN2O is the riverine N2O emissions fluxes across the water- 
atmosphere interface (μmol m− 2 d− 1); KN2O is the transfer ve-
locity of N2O (m d− 1); [N2O]water and [N2O]eq represent con-
centrations of dissolved N2O (nmol L− 1) in the surface water and 
theoretical equilibrium concentration (nmol L− 1), respectively. 

Fig. 1. Location of the study area and sampling sites in Liuyang River Basin.  
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(ii) The dissolved N2O concentration model was developed according 
to principal reactants ([NH4

+] and [NO3
− ]) of the N2O cycling. We 

collected individual measurements of global rivers to build the 
training dataset, which were obtained from different regions ac-
cording to the previous literature (Table S4). The outliers (DIN 
concentrations and dissolved N2O concentrations) that were 
more than 1.5 times the interquartile range from upper quartile 
or lower quartile were cleaned in the training dataset (Heller-
stein, 2008). The training dataset includes 230 observations in 
Asia, 231 observations in Europe, 295 observations in Africa, and 
8 observations in North America. Dissolved N2O concentrations 
demonstrated a powerful correlation with the [NH4

+] and [NO3
− ] 

concentrations than with [NH4
+] or [NO3

− ] concentrations indi-
vidually (Gao et al., 2020). [N2O]water was calculated as the 
equation of the riverine [NH4

+] and [NO3
− ] concentrations based 

on training dataset. Urban, agricultural and forested rivers 
represent different N levels that may exhibit different responses 
to dissolved N2O concentrations (Mwanake et al., 2019). There-
fore, we split the training dataset according to different N levels 
to explore the response of dissolved N2O concentration to 
different N levels. The empirical function of dissolved N2O and 
DIN ([NH4

+] and [NO3
− ]) in rivers was established by using mul-

tiple linear regression according to different N levels. The R2 

values of dissolved N2O concentration and DIN were 0.61 (DIN <
6 mg L− 1) and 0.74 (DIN > 6 mg L− 1), respectively (Fig. 2). 

[N2O]water = 2.92
[
NO−

3

]
+ 24.23

[
NH+

4

]
+ 12.28 (DIN < 6 mg /L)

(2)  

[N2O]water = 0.79
[
NO−

3

]
+ 22.36

[
NH+

4

]
+ 14.74 (DIN > 6 mg /L)

(3)  

where [NH4
+] and [NO3

− ] are the riverine ammonia and nitrate 
concentrations (mg/L), respectively. 

Dissolved N2O concentration module performance was evaluated 
through field measurements. Dissolved N2O in the on-site water 
samples was calculated by the headspace equilibrium technique 
(Wang et al., 2018), as following Eq. (4): 

Cobs = P
(

K0 +
1

RT
Vg

Vl

)

(4)  

where Cobs is the dissolved N2O concentration (mol L− 1); P represents 
the partial pressure of N2O (atm) in the headspace after equilibra-
tion; K0 represents the solubility coefficient (mol L− 1 atm− 1) calcu-
lated according to the temperature and salinity (Weiss and Price, 
1980); R represents the gas constant (L atm mol− 1 K− l); T represents 

temperature (K) when equilibrating; Vl and Vg represent the volume 
of the water samples and the gas phase (L), respectively.  

(iii) Since N2O emissions are affected by multiple factors and their 
interactions, a process-based model which can incorporate these 
components is required for realistic simulations. The SWAT 
model includes processes such as hydrology, nutrient cycles, and 
management practices and can incorporate possible aspects that 
affect N2O emissions (Ghimire et al., 2020). Meanwhile, SWAT 
can model the riverine NH4

+, NO3
− , and water temperature and 

provide information about the stream hydraulics. These param-
eters are needed to simulate watershed-scale riverine N2O emis-
sions (Fu et al., 2018). Table S2 data were used as input for the 
SWAT model. Then SWAT-CUP was used to calibrate and validate 
the model parameters related to streamflow and N load simula-
tions (Liang et al., 2020). Finally, the riverine DIN concentration 
was determined based on the calibrated SWAT model.  

(iv) The theoretical equilibrium N2O concentration model for the 
study area was calculated according to the atmospheric N2O data 
from the Global Monitoring Laboratory (GML) (https://gml.noaa. 
gov/hats/combined/N2O.html) considering atmospheric N2O 
dynamic (Gao et al., 2020) (Fig. S2); (More details were provided 
in the Supplementary material)  

(v) The N2O transfer velocity module was calculated based on the 
combination of both wind and water currents. We applied 
hydromorphological equations to quantify the stream features of 
the river (Raymond et al., 2012) (Fig. S3). (More details were 
provided in the Supplementary material) 

2.4. Data analysis method 

2.4.1. Spatiotemporal analysis method 
Heatmap (Fig. 3a) and box-and-whisker diagrams (Fig. 3b,c) of the 

spatiotemporal distribution of N2O fluxes were plotted by Origin 2020b 
(version 9.75). To further identify the hot and cold spots of N2O emis-
sions, we performed hotspot analysis based on the Hot Spot Analysis 
(Getis-Ord Gi*) tool in ArcGIS (version 10.8) (Fig. S4). This tool has been 
widely acknowledged as a powerful tool for visually identifying spatial 
clusters of statistically significant hot (high values) or cold (low values) 
spots within a study area (Jana and Sar, 2016). Meanwhile, we used 
Locally weighted scatterplot smoothing (Lowess) to further explore the 
relationship between land use and emission flux. For data with a certain 
trend, Lowess can fit a line that conforms to the overall trend, and then 
analyze the relationship between variables (Zhang et al., 2021). 

2.4.2. Correlation and attribution analysis 
To study the impact of environmental factors on N2O emissions, we 

Fig. 2. Multiple linear regression relationship between the observed and predicted dissolved riverine N2O concentrations during the training for low (a) and high (b) 
nitrogen concentrations. Comparison of the modeled and observed riverine dissolved N2O concentrations during the testing (c). 
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calculated the correlations among variables using Correlation Plots in 
Origin 2020b (version 9.75). To further determine the driving force of 
environmental factors on N2O emissions, we integrated a path model 
with SEM to reveal the direct and indirect impacts of key explanatory 
variables on N2O fluxes (Zhao and Zhang, 2021). Given the data char-
acteristics of this study (small sample size and non-normal data) and the 
model complexity, we used the partial least squares (PLS) method to 
determine the path coefficients and model fitting parameters by 
SmartPLS (version 3.3.9). Finally, we conduct an overall assessment of 
the PLS-SEM model through the reflective measurement models evalu-
ation and the structural model evaluation. The evaluation criteria of the 
reflective measurement models mainly include indicator reliability (in-
dicator loadings), internal consistency (Cronbach’s alpha (CA) and 
composite reliability (CR)), convergent validity, and discriminant val-
idity (Fornell-Larcker criterion and HTMT) (Hair et al., 2012; Henseler 
et al., 2015; Urbach and Ahlemann, 2010). The evaluation criteria of 
structural model mainly include Coefficient of determination (R2), Effect 
size (f2), Path Coefficient (t&p values) and Goodness of Fit (GOF) (Hair 
et al., 2012; Khan et al., 2021; Urbach and Ahlemann, 2010). The 
reflective measurement models and structural model achieved 

satisfactory performance, indicating that the PLS-SEM has been well 
established and can be utilized for further analysis. (detailed evaluation 
criteria and model performance are supplied in the Supplementary 
Information) 

3. Results and discussion 

3.1. Model performance evaluation 

After the sensitivity analysis using SWAT-CUP, the monthly 
discharge, ammonia, and nitrate were calibrated and validated from the 
two hydrology monitoring stations in the LYRB. Table S5 listed the 
sensitive parameters adopted in the SWAT model. R2 and NS for cali-
bration and validation periods were calculated to assess the model 
simulation performance. For streamflow, NH4

+-N loading and NO3
− -N 

loading simulations, the R2 values and NS values during calibration and 
validation were greater than 0.65 and 0.60, respectively (Fig. S5). Thus, 
the model performance met the requirements, which meant that the 
SWAT model has been well established in the LYRB and can be utilized 
for further analysis (Yang et al., 2016). For different N levels, the R2 

Fig. 3. Spatiotemporal characteristics of monthly mean riverine N2O emission fluxes simulated in the sub-basin. (a)Heatmap of log-transformed N2O emission fluxes 
for different months and subbasins. The abscissa corresponds to the spatial emission patterns of upstream, midstream and downstream, and the ordinate corresponds 
to the temporal emission patterns of different months. Box-and-whisker diagrams represent the variation of riverine N2O emissions fluxes for different (b) seasonal 
and (c) watersheds. The whisker diagrams on the left show the scatter and its corresponding distribution curve, and the box diagrams on the right indicate to the 
range from 25 to 75%. Whiskers correspond to the range of 2.5–97.5%, and the median and mean are represented by horizontal white lines and black squares, 
respectively. 
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values of dissolved N2O concentration and DIN were 0.61 (DIN < 6 mg 
L− 1) and 0.74 (DIN > 6 mg L− 1), respectively. The riverine dissolved 
N2O concentration module achieved acceptable performance during the 
testing stages (R2 = 0.68) (Fig. 2), indicating that the developed module 
can capture the spatiotemporal variability of dissolved N2O concentra-
tion for different reaches. Considering the atmospheric N2O dynamic, 
the R2 values for predicting the monthly atmospheric N2O concentration 
in the study area were all greater than 0.99, demonstrating that the 
annual average monthly growth rate was fairly constant (Fig. S2). In 
conclusion, the magnitude and spatiotemporal patterns of riverine N2O 
emissions fluxes can be well captured by coupling the SWAT model and 
the riverine N2O emissions model. 

3.2. Spatiotemporal pattern of riverine N2O emissions fluxes 

3.2.1. Cultivation period is the hotspot of riverine N2O emissions 
Riverine N2O emission fluxes for different seasons are presented in 

Fig. 3b, which has strong temporal variability. The dissolved N2O con-
centrations were far above theoretical equilibrium concentrations, 
indicating that the supersaturation of N2O in rivers was significant. 
Specifically, the average fluxes of riverine N2O can be ranked as: autumn 
(152.16 ± 126.88 μmol m− 2 d− 1) > summer (107.52 ± 73.34 μmol m− 2 

d− 1) > winter (91.52 ± 108.24 μmol m− 2 d− 1) > spring (72.45 ± 74.2 
μmol m− 2 d− 1). The strong riverine N2O emissions from August to 
October are the hot spots in the whole year, accounting for about 
35.38% of the annual emission. Among them, the N2O flux in September 
was the highest, with its average flux (156.84 ± 148.15 μmol m− 2 d− 1) 
of 1.87–2.50 times that of the fluxes from February to April. 

Temporal patterns of subtropical inland watersheds (Fig. 4) are 
dominated by the combined effects of gas transfer velocity and the 

concentration gradient of N2O. The temporal variability of dissolved 
N2O concentration (Fig. 4b) is controlled by both local and regional 
factors. July to October is the cultivation period of single rice and late 
rice in the LYRB (Liu et al., 2015). The diffuse nitrogen loads on the land 
surface increased sharply due to the effects of plant and fertilization 
during this period (Huang et al., 2022). In the meantime, heavy pre-
cipitation events enhanced the transport of nutrients, resulting in 
increasing nitrogen levels in rivers (Yao et al., 2020). Nitrogen is an 
important reactant for N2O generation, which can promote nitrification 
and denitrification. The gas transfer velocity and theoretical equilibrium 
concentration changes are mainly controlled by regional factors. Gas 
transfer velocity (Fig. 4c) generally depends on seasonal changes in 
meteorological and hydrological conditions (Yan et al., 2022). The LYRB 
is located in the subtropical monsoon climate region, which has an 
obvious seasonal pattern of hydrology and meteorology. The rainy 
season (April to August) precipitation accounted for 60.4% of the annual 
precipitation. The increase in water velocity and depth caused by heavy 
precipitation promoted the gas diffusing effect across the water-air 
interface (Song et al., 2022). The theoretical equilibrium N2O concen-
tration (Fig. 4d) was mainly affected by the air temperature. From June 
to September, the water temperature reached the highest value in the 
whole year under the influence of air temperature. The fugacity of N2O 
took on a descending trend with increasing water temperature. Low 
fugacity and moderate atmospheric N2O content resulted in lower 
theoretical equilibrium N2O concentration (Gao et al., 2019; Weiss and 
Price, 1980). Consequently, the riverine N2O emissions from August to 
October are the hot spots in the whole year under the influence of high 
N2O transfer velocity and N2O concentration difference. 

Fig. 4. Modeled monthly N2O emission fluxes and (a) ΔN2O concentration, (b) dissolved N2O concentration, (c) transfer velocities, (d) theoretical equilibrium N2O 
concentration. 
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3.2.2. Urban watersheds are hotspots of indirect N2O emission 
The discrepancies in the riverine physicochemical indicators 

(Table 1) caused by variations of land use types (Table S13) may be the 
potential factor across watersheds for the differences in magnitudes of 
the N2O emissions (Zhang et al., 2020a, 2021). The flux of N2O at each 
reach was significantly correlated with the dominant land use and its 
percentage within the watershed (Fig. 5). Although urban rivers, as 
hotspots of riverine N2O emissions, only account for 18.46% of the 
channel area in the whole basin, N2O emissions from urban reach ac-
count for 27.93% of the annual mean N2O emissions (Table S14). This 
illustrates that UW (10.95 kg N2O − N yr− 1) played a disproportionate 
role in basin-wide N2O emissions (Fig. 5a) (Borges et al., 2015). Spe-
cifically, the differences in pollution sources, water environmental fac-
tors, and activities of certain microorganisms and critical enzymes in 
different types of watersheds caused the significantly higher N2O 
(191.22 ± 156.19 μmol m− 2 d− 1) in UW than in other river segments 
(He et al., 2017; Quick et al., 2019; Zhou et al., 2022). UW frequently 
receive substantial wastewater from point-source discharges (mean: 
UW = 61142.07 m3/d > AW = 58945.99 m3/d > MW = 328.07 m3/d >
FW = 156.97 m3/d) and urban runoff, with much higher nutrient 
loadings than other rivers. Sewage from various sources provides 
appropriate environmental conditions for N2O production in rivers (He 
et al., 2017; Yu and Lu, 2018). Exogenous dissolved N2O in sewage from 
wastewater treatment plants is another important source of riverine N2O 
emissions in urban waters besides in-situ N2O generation (Zhou et al., 
2022). Therefore, the spatial hotspots of N2O emission commonly 
appear in river segments where considerable sewage is discharged 
(Turner et al., 2016).The abundant presence of specific substances and 
inconstant riverine physicochemical conditions may inhibit the activ-
ities of critical enzymes and certain microorganisms. Hydrogen sulfide 
(H2S), which is highly present in UW, strongly restrains the reduction of 
N2O to N2, contributing to more N2O accumulation (Quick et al., 2019; 
Zhang et al., 2020a). The average in-situ water temperature in UW was 
slightly higher than in others due to warm sewage from households and 
industries and urban heat island effects. Consequently, nitrifying and 
denitrifying microorganisms could adequately take advantage of 
favorable thermal conditions to promote more N2O production (Ven-
kiteswaran et al., 2014). 

The N2O emissions demonstrated intense spatial heterogeneity in the 
LYRB, and there was a visible pattern from upstream to downstream. FW 
had the lowest N2O fluxes (63.18 ± 59.40 μmol m− 2 d− 1), which were 
23–67% lower than others. Specifically, the reasons why FW are cold 
spots for N2O emissions are as follows: Firstly, FW have limited N supply 
and oversaturated DO compared with others, resulting in weak pro-
cesses related to N2O production (Borges et al., 2018). Second, the 
mismatch of forms of reactive nitrogen (Nr) with DO conditions is not 

conducive to N2O generation. Incomplete denitrification is normally 
facilitated by elevated nitrate concentrations and suboxic conditions, 
whereas the ammonia oxidation (nitrification and nitrifier denitrifica-
tion) is favored at higher concentrations of ammonia and DO (Quick 
et al., 2019). Because of the extremely low ammonia concentrations and 
high DO in the FW, it is not conducive to the production of N2O through 
the above two pathways. Finally, in the northeast forested watershed, a 
high flow rate owing to steep terrain may hinder the production of N2O. 
The low flow speeds regions are usually important sites for N2O pro-
duction since microbial nitrogen processing requires intermediate resi-
dence times (Quick et al., 2019). 

3.3. Influences of environmental factors 

3.3.1. Relationship between N2O emissions and riverine physicochemical 
indicators 

Riverine physicochemical characteristics (Table 1) affect N2O pro-
duction through biogeochemical or physical processes. As shown in 
Fig. 6, the physicochemical indicators of the river may be potential 
proximate controls of N2O emissions. The Cl− (r = 0.80; p < 0.001) was 
most significantly associated with N2O emission. On the one hand, Cl−

perhaps stimulated nitrifier activity. The activity of the nitrifier was 
stimulated by 50% with increasing salinity from 0 to 15 psu (Magalhães 
et al., 2005). On the other hand, both microbial population and N2O 
reductases were sensitive to salinity in freshwater or low-salinity sites 
(Teixeira et al., 2013). The ammonia-oxidizing archaea (AOA) abun-
dance correlated with salinity and was highest at mid salinity. The study 
area is located in an inland freshwater watershed with low salinity 
levels. The abundance of AOA and the potential nitrification rate were 
significantly and positively correlated with low salinity levels (Beaulieu 
et al., 2011). Therefore, suitable Cl− concentrations promote microbial 
activity and increase microbial diversity, thereby increasing N2O pro-
duction in water columns and sediments (Li et al., 2020). 

Secondly, N-related indicators (TN, NH4
+, NO3

− ) can also significantly 
affect N2O emissions. The correlation between N2O emission and NO3

− (r 
= 0.63; p < 0.001) was higher than that of NH4

+ (r = 0.40; p < 0.001). 
The positive correlation between N2O emissions and NO3

− might be that 
higher NO3

− concentrations suppressed the production of nitrous oxide 
reductase, an enzyme that reduces N2O to N2 (Zhao et al., 2014). In 
addition to denitrification regulated by NO3

− , nitrifier denitrification and 
nitrification are also important processes for the production of N2O. 
Higher NH4

+ concentrations can promote nitrifier activity, increasing 
NO3

− concentrations (Quick et al., 2019). This increase in NO3
− concen-

trations in turn leads to enhanced denitrification activity. FW, AW and 
UW represent the different N levels, thus may show different response to 
riverine dissolved N2O (Mwanake et al., 2019). Compared with AW and 

Table 1 
Riverine physicochemical indicators for different watersheds.  

Sampling 
season 

Watershed 
type 

TP 
(mg/L) 

TN 
(mg/L) 

NH4
+

(mg/L) 
NO3

−

(mg/L) 
SO4

2−

(mg/L) 
Cl−

(mg/L) 
pH DO 

(mg/L) 
Temperature 
(◦C) 

Wet 
period 

FW 0.04 ±
0.05 

0.3 ± 0.44 0.05 ±
0.07 

1.34 ± 1.23 2.92 ± 1.73 2.54 ± 1.72 7 ± 0.59 7.43 ±
2.02 

28.64 ± 2.08 

AW 0.18 ±
0.12 

3.4 ± 2.11 1.8 ± 1.68 7.2 ± 7.87 22.24 ± 15.6 24.64 ±
13.62 

7.2 ± 0.14 5.65 ±
0.27 

29.88 ± 0.44 

UW 0.26 ±
0.12 

5.83 ± 1.3 1.76 ±
1.59 

12.61 ±
9.13 

37.82 ±
21.72 

28.16 ±
11.5 

7.14 ± 0.2 5.79 ±
0.26 

29.02 ± 1.04 

MW 0.12 ±
0.07 

1.75 ± 1.1 0.26 ±
0.18 

6.94 ± 6.9 57.71 ±
114.4 

6.79 ± 4.06 7.23 ±
0.23 

6.07 ±
1.04 

27.87 ± 0.89 

Drier period FW 0.04 ±
0.05 

0.92 ±
0.95 

0.06 ±
0.14 

3.43 ± 3.08 3.97 ± 1.82 2.95 ± 2.07 7.28 ±
0.24 

9.98 ±
1.66 

7.41 ± 1.78 

AW 0.1 ± 0.05 2.89 ±
0.89 

1.08 ±
1.01 

7.47 ± 2.56 24.94 ±
14.43 

20.35 ±
10.29 

6.81 ±
0.13 

8.73 ±
1.69 

9.83 ± 1.44 

UW 0.18 ±
0.19 

7.38 ±
2.02 

1.39 ±
2.01 

27.27 ±
10.23 

59.12 ±
28.84 

63.57 ±
32.87 

6.95 ±
0.21 

9.1 ± 2.75 13.58 ± 2.54 

MW 0.04 ±
0.06 

1.62 ±
1.05 

0.33 ±
0.48 

5.72 ± 3.55 84.95 ±
164.95 

8.15 ± 8.66 7.11 ±
0.19 

9.66 ±
2.17 

10.77 ± 1.85  
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UW, the dissolved N2O concentrations in forested rivers responded 
weakly to DIN (Fig. S6), which suggests that other factors such as DO 
may also be limiting factors for N2O generation in addition to N-related 
indicators (Venkiteswaran et al., 2014).Dissolved N2O concentrations 
showed a strong positive correlation with DIN when DIN was less than 
12 mg/L in UW (Fig. S6), suggesting that the reactant is an important 
explanatory variable for N2O production (Quick et al., 2019).But as the 
concentration of DIN increased (DIN > 12 mg/L), the reactants con-
centration approached saturation, and other indicators such as carbon 
sources and conductivity may play a more important role in N2O 
emissions (Turner et al., 2016). 

Other physicochemical indicators (TP, DO, water temperature) are 
also positively related to riverine N2O emissions. For example, TP (r =
0.42; p < 0.001) was positively correlated with N2O emissions, and the 
correlation was higher than that of NH4

+ (r = 0.40; p < 0.001) in this 
study. For one thing, P loading could relieve the phosphorus-deficiency 
state of nitrogen-cycling bacteria and affect microbial activities leading 
to hypoxia in the water environment, promoting the production of N2O 
(He et al., 2017). For another thing, N2O production is affected by 
phytoplankton biomass, and relatively high TP concentrations have the 
potential to enhance autotrophic organic carbon and chlorophyll a 
concentrations (Wang et al., 2021). DO (r = − 0.26; p < 0.01) was 
negatively related to N2O emissions in this region. The excessive DO 
would inhibit anaerobic metabolism and key enzymes that control N2O 
reduction and formation. The average DO level in the study area was 
slightly higher than the suboxic conditions favored by N2O production, 
and the small variations (low SD in Table 1) resulted in a weaker 

Fig. 5. The relationships between channel area and annual mean N2O emissions from rivers with different land uses (a). The relationships between modeled monthly 
mean N2O emission fluxes from rivers in the subbasin and the percentage of (b) woodland (c) cropland and (d) urban in their subbasin, respectively. Linear regression 
R values and significance degree are shown. LOWESS fit was used to visually demonstrate the influences of the land use compositions on riverine N2O fluxes. 

Fig. 6. Matrices of Spearman’s correlations between river physicochemical 
variables and N2O emission fluxes (n = 102;*p < 0.05;**p < 0.01) .Green and 
red dots within squares indicate to positive and negative correlations, respec-
tively. The numbers above the diagonal line represent Spearman’s correlation 
coefficients, and their colors match the colors of the corresponding circles. 
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influence than other physicochemical factors (Venkiteswaran et al., 
2014). 

3.3.2. Relative importance of environmental factors in N2O emissions 
We further determined the relative contributions of different factor 

types to N2O emission fluxes (Fig. 7). SEM results indicated that dis-
solved N2O concentration played a decisive role in the process of water- 
air exchange (r = 0.841, p < 0.001). Spatiotemporal distribution of N2O 
emissions followed a similar pattern to riverine dissolved N2O concen-
tration (Figs. 4b and 6) (Harley et al., 2015; Wang et al., 2015). The 
correlation analysis also suggested a similar pattern between dissolved 
N2O concentrations and riverine N2O emissions (r = 0.86; p < 0.001). 
The key factors influencing the dissolved N2O concentration were 
non-point source (r = 0.678, p < 0.001), point source (r = 0.241, p <
0.01) and water quality (r = 0.200, p < 0.05) in sequence. Non-point 
source impacts are directly attributable to intensive fertilizer use, as 
well as human and animal waste, resulting in greatly increased nitrogen 
exports in the drainages, thereby promoting N2O generation and emis-
sions from aquatic systems (Chen et al., 2015). The results of SEM 
further emphasized that the cultivation period was the temporal hotspot 
of riverine N2O emissions under the influence of non-point sources. 
There are four possible underlying reasons behind the high N2O emis-
sions in the downstream urban rivers. Firstly, downstream urban rivers 
can receive nutrients from midstream agricultural rivers (Zhou et al., 
2022). Secondly, the impacts of agricultural non-point sources on rivers 
are mainly in the overlapping period of fertilization and heavy precip-
itation. Regardless of the season, the WWTPs discharge sewage steadily. 
Therefore, the impact cycle of point sources on UW is longer (Chen et al., 
2015; Zhou et al., 2022). Then, direct emissions from cropland soil are 
the major source of regional atmospheric N2O concentrations (Huang 
et al., 2022). The higher theoretical equilibrium concentration in the 
AW suppressed the diffusion effect of riverine N2O. Finally, the effects of 
point sources and water quality are more pronounced in UW than in AW. 
Point sources transport large amounts of nutrients and exogenous dis-
solved N2O to urban reaches. At the same time, the suitable water 
quality of urban rivers is conducive to the production of dissolved N2O 
(Zhang et al., 2020, 2021). 

Transfer velocity (r = 0.209, p < 0.01) and theoretical equilibrium 
N2O concentration (r = − 0.176, p < 0.01) were secondary factors 
affecting riverine N2O emissions. The key factors affecting the transfer 
velocity were meteorological factors (r = 0.891, p < 0.001) and land use 
(r = 0.308, p < 0.001). Meteorological variables (temperature, precip-
itation, and evaporation) are the key factors controlling flow and water 
levels, and water temperature varies regularly with air temperature 

(Liang et al., 2021). High water velocity, wind speed, and temperature 
can enhance transfer velocity across the water− air interface. Land use is 
another important factor affecting the N2O transfer velocity (Wang 
et al., 2020). The transfer velocities in FW, AW, and UW are controlled 
by water velocity, wind speed, and water temperature, respectively. 
Firstly, the northeast forest watershed has a steep slope and fast flow, 
while the non-forest watershed has a gentle slope and slow flow (Guan 
et al., 2020; Zhang et al., 2021). Second, the flat agricultural landscape 
promoted the gas diffusing effect, while the high-rise buildings in the 
urban landscape and tall trees in the forest landscape weakened the 
influence of wind speed on riverine N2O flux (Song et al., 2022). Finally, 
the average in-situ water temperatures in UW are slightly higher than in 
others due to warm sewage and urban heat island effects (Ven-
kiteswaran et al., 2014). 

The key factors affecting the theoretical equilibrium N2O concen-
tration were meteorological factors (r = − 0.998, p < 0.001). Air tem-
perature changes in meteorological factors control fugacity changes, 
thereby affecting the theoretical equilibrium concentration (Gao et al., 
2020). The results of SEM also explain, from one side, that N2O gener-
ation by river microbial in this study does not depend on water tem-
perature. N2O emission is mainly controlled by dissolved N2O, while 
water temperature mainly affects the theoretical equilibrium concen-
tration. Therefore, N2O emission has no statistical correlation with 
water temperature. On the flip side, the effect of water temperature is 
concealed by more critical factors (Beaulieu et al., 2010). In this study, 
the water temperature was negatively related to DO (r = − 0.66; p <
0.001), so variability in DO may overwhelm the control of temperature 
on microbial metabolism (Fig. 6) (Zhang et al., 2020b). 

3.4. Limitations and future research directions 

The uncertainties of this study stem from model architecture, pa-
rameters, and observational data used for validation and analysis. 
Firstly, the dissolved N2O concentration was only calculated based on 
stream [NH4

+] and [NO3
− ] in this study, while many other environmental 

indicators (such as water temperature, DO, riverbed morphology, dis-
solved organic carbon and particulate, etc.) may also influence its con-
centration. Although the calculation of the gas transfer velocities takes 
into account the effects of water temperature and riverbed morphology, 
the dissolved N2O concentration model does not reflect the effects of 
these environmental factors (Fu et al., 2018). In addition, the empirical 
equation of multiple linear regression has some uncertainties. Linear 
regression explores the influence of environmental factors on a fixed 
basis of other factors, without considering the complex interactions of 

Fig. 7. PLS-SEM framework and model results of the impact of environmental factors on riverine N2O emissions fluxes. Large and small rectangles represent latent 
and observed variables, respectively. Black thick solid line and black thick dashed line indicate significant effect (p < 0.05) and insignificant effect (p > 0.05), 
respectively. Numbers on thick black and thin blue lines refer path coefficients and indicator loadings, respectively. 
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environmental factors. And empirical models capture correlation rather 
than causation (Zhang et al., 2020a). Second, another uncertainty is 
related to the calculation of k. Here, we adopted Eq. (9) to calculate k. 
However, the riverine N2O emissions calculated by different k values 
under the same environment can also be significantly different. Thus, it 
remains a great challenge to quantify k under different field conditions 
and choose the correct parameterization of k to achieve the best esti-
mation (Wang et al., 2020). Third, it is difficult to achieve long-term 
field trials and monitoring of N2O emissions in the whole basin due to 
labor and financial limitations. The limited number of samples may lead 
to a lack of sufficient explanatory power for spatiotemporal patterns and 
driving factors. Therefore, an emphasis on greater temporal (higher 
sampling frequency) and spatial (more locations) data collection is 
necessary to enhance model usability and interpretability of drivers (Hu 
et al., 2021b). Finally, this study only explored the relationship between 
N2O emissions and basic environmental factors, without considering the 
contributions of microbial abundance and activity and N2O production 
and consumption. Therefore, detailed studies on the microbial processes 
influencing the N2O emission process in inland rivers should receive 
attention in the future (Yang et al., 2020). 

4. Conclusion 

In this study, we determined the spatiotemporal fluctuations of 
riverine N2O emissions based on SWAT outputs and established empir-
ical equations, and evaluated model performance through field mea-
surements. The results show that N2O emissions from rivers in 
subtropical inland watersheds have obvious spatiotemporal patterns. 
Temporally, the high N2O emissions from the river occurred from 
August to October (accounting for 35.38% of the annual emission). The 
diffuse nitrogen loads on the land surface increased sharply due to the 
effects of plant and fertilization. In the meantime, heavy precipitation 
events enhanced the transport of nutrients, resulting in increasing ni-
trogen levels in rivers. Spatially, riverine N2O emissions fluxes from 
different types of land use had great spatial heterogeneity, as follows: 
urban watersheds (191.22 ± 156.19 μmol m− 2 d− 1) > agricultural wa-
tersheds (123.48 ± 99.64 μmol m− 2 d− 1) > mixed watersheds (82.25 ±
54.24 μmol m− 2 d− 1) > forest watersheds (63.18 ± 59.40 μmol m− 2 

d− 1). The exogenous dissolved N2O and suitable physical and chemical 
indicators (sufficient nitrogen supply and relatively low DO conditions) 
were the reasons for the high N2O emissions in urban watersheds. In 
addition, the physicochemical indicators of the river are potential direct 
controlling factors of N2O emissions. Riverine N2O emissions were 
significantly correlated to Cl− (r = 0.80; p < 0.001) and N-related in-
dicators (TN, NO3

− and NH4
+). On the one hand, Cl− perhaps stimulated 

nitrifier activity. On the other hand, both microbial population and N2O 
reductases were sensitive to salinity in freshwater or low-salinity sites. It 
also emphasized that N-related indicators are important reactants for 
N2O generation, which can promote nitrification and denitrification. 
Meanwhile, SEM revealed that riverine N2O emissions follow the similar 
pattern to dissolved N2O concentrations (r = 0.841, p < 0.001), and non- 
point sources (r = 0.678, p < 0.001) were identified as the most influ-
ential variable in riverine dissolved N2O concentrations. Non-point 
source impacts lead to greatly increased nitrogen exports in the drain-
ages, thereby promoting N2O generation and emissions from aquatic 
systems. 
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